Mathematical Foundations of computer science

Lecture 5: Completeness in propositional logic

Speaker: Toru Takisaka

April 9, 2024

Recap

Our first goal: formalize a "mathematician"

- Analysis target of Mathematician \approx Formulas
 - Mathematical assertions \rightarrow Formulas
 - Truth of assertions \rightarrow Valuation function
- Mathematician \approx those who write proofs of formulas
 - Tools: axioms, assumptions, inference rules
 - Proof \rightarrow seq. of formulas from axioms/assump. to target, connected by inference rules
- Properties of Mathematician
 - Soundness theorem: proved formulas are "true"
 - Today: Which "true" formulas can Mathematician prove?

Theorem (Soundness of proof structure)

If there is a proof of φ from Σ , then Σ logically implies φ ; that is,

 $\Sigma \vdash \varphi \text{ implies } \Sigma \models \varphi.$

The theorem roughly claims "correctness" of Mathematician: a proved formula under assumptions Σ is true whenever Σ is.

Theorem ((First) completeness of proof structure)

 $\Sigma \models \varphi \text{ implies } \Sigma \vdash \varphi.$

The theorem roughly claims the "capability" of Mathematician: They can prove any φ from Σ whenever Σ logically implies φ .

Theorem (Soundness of proof structure)

If there is a proof of φ from Σ , then Σ logically implies φ ; that is,

 $\Sigma \vdash \varphi \text{ implies } \Sigma \models \varphi.$

The theorem roughly claims "correctness" of Mathematician: a proved formula under assumptions Σ is true whenever Σ is.

Theorem ((First) completeness of proof structure)

 $\Sigma \models \varphi \text{ implies } \Sigma \vdash \varphi.$

The theorem roughly claims the "capability" of Mathematician: They can prove *any* φ from Σ whenever Σ logically implies φ .

Definition

We say that Σ is **inconsistent** if $\Sigma \vdash \bot$. If $\Sigma \nvDash \bot$ then we say that Σ is **consistent**.

A proof of a formula φ from inconsistent Σ implies nothing nontrivial about the truth of φ (next page).

Thus, consistency could be said as a minimum requirement to Σ as reasonable assumptions by Mathematician.

Note: (In)consistency is a purely syntactic notion, i.e., it does not involve valuation of Σ in its definition.

Lemma

There is no model of inconsistent Σ .

Assume that Σ is inconsistent.

Then $\Sigma \vdash \bot$.

By the soundness theorem, any model of Σ should be a model of $\bot.$

But, \perp has no model. Hence, all inconsistent sets Σ have no models.

Lemma

Inconsistent Σ can prove any formula, that is, $\Sigma \vdash \varphi$ for any φ .

Proving this lemma is left as a homework.

" Σ has a model" could be seen as a minimum requirement to Σ as assumptions by Mathematician, *via the semantic notion*.

- If not, then $\Sigma \models \varphi$ trivially holds for any φ
- For the syntactic notion, consistency of Σ does the job

The following theorem says these two requirements coincide.

Theorem (The Second Completeness Theorem)

A set of formulas Σ is consistent iff Σ has a model.

Let Σ be a set of formulas, and φ and ψ be formulas.

Lemma (The MP rule over provability)

If $\Sigma \vdash \varphi$ and $\Sigma \vdash \varphi \rightarrow \psi$, then $\Sigma \vdash \psi$.

Proof: Make a sequence of formulas by appending the proof of φ , then the proof of $\varphi \rightarrow \psi$, and then the formula ψ . This is a proof of ψ .

Let Σ be a set of formulas, and φ and ψ be formulas.

Lemma (Deduction Lemma)

If $\Sigma \cup \{\varphi\} \vdash \psi$ then $\Sigma \vdash \varphi \rightarrow \psi$.

Proof. Induction of the length of the proof $\Sigma \cup \{\varphi\} \vdash \psi$.

Assume the length is 1. Then ψ is an axiom or $\psi \in \Sigma$ or $\varphi = \psi$. In the first two cases, $\Sigma \vdash \psi$ and $\psi \rightarrow (\varphi \rightarrow \psi)$ is an axiom. By the MP we have $\Sigma \vdash \varphi \rightarrow \psi$. If $\varphi = \psi$, then we already have $\vdash \varphi \rightarrow \varphi$ and hence $\Sigma \vdash \varphi \rightarrow \psi$.

10/22

Let $\varphi_1, \ldots, \varphi_{k+1}$ be a proof of ψ from $\Sigma \cup \{\varphi\}$. So, $\varphi_{k+1} = \psi$. If φ_{k+1} is an axiom or $\varphi_{k+1} \in \Sigma$ or $\varphi_{k+1} \in \{\varphi_1, \ldots, \varphi_k\}$, then the inductive hypothesis is applied, and we are done.

Otherwise, we have $\Sigma \cup \{\varphi\} \vdash \alpha$ and $\Sigma \cup \{\varphi\} \vdash \alpha \rightarrow \psi$, where $(\alpha \rightarrow \psi), \alpha \in \{\varphi_1, \dots, \varphi_k\}$.

By the inductive hypothesis, $\Sigma \vdash \varphi \rightarrow (\alpha \rightarrow \psi)$ and $\Sigma \vdash \varphi \rightarrow \alpha$.

We have the axiom $(\varphi \to (\alpha \to \psi)) \to ((\varphi \to \alpha) \to (\varphi \to \psi))$. Applying the MP rule twice we get $\Sigma \vdash \varphi \to \psi$.

Corollary (proof by contradiction)

 $\Sigma \vdash \varphi$ if and only if $\Sigma \cup \{\neg \varphi\}$ is inconsistent.

Proof.

Assume $\Sigma \vdash \varphi$. Consider $\varphi \rightarrow (\neg \varphi \rightarrow \bot)$ an axiom. By the MP, we have $\Sigma \vdash \neg \varphi \rightarrow \bot$. Also, $\Sigma \cup \{\neg \varphi\} \vdash \neg \varphi$. Again, by the MP, we have $\Sigma \cup \{\neg \varphi\} \vdash \bot$.

Assume $\Sigma \cup \{\neg \varphi\}$ is inconsistent. Then $\Sigma \cup \{\neg \varphi\} \vdash \bot$. By the deduction lemma, $\Sigma \vdash \neg \varphi \rightarrow \bot$. We have $(\neg \varphi \rightarrow \bot) \rightarrow \varphi$ axiom. By the MP rule, we get $\Sigma \vdash \varphi$.

The Deduction Lemma: Application 2

Corollary

If $\Sigma \vdash \varphi$ and Σ is consistent then $\Sigma \cup \{\varphi\}$ is also consistent.

Proof.

Assume the contrary, i.e., assume $\Sigma \cup \{\varphi\}$ is inconsistent. Then $\Sigma \cup \{\varphi\} \vdash \bot$. By the deduction lemma, we have $\Sigma \vdash \varphi \rightarrow \bot$. By the MP rule, $\Sigma \vdash \bot$. This contradicts consistency of Σ ; hence, $\Sigma \cup \{\varphi\}$ is consistent.

Definition

A set of formulas Σ is **complete** if Σ is consistent and for any formula φ either $\varphi \in \Sigma$ or $\neg \varphi \in \Sigma$.

Intuitively, a complete Σ is "the book of truth"; you can take any φ and ask Σ , "is φ true or not?". Then Σ says yes if $\varphi \in \Sigma$; or no if $\neg \varphi \in \Sigma$. (the precise meaning of "truth" will be formally characterized shortly.)

Lemma (Lindenbaum Lemma)

Any set Σ of consistent formulas has a complete extension.

List all formulas $\varphi_1, \varphi_2, \ldots, \varphi_i, \ldots$

For each φ_i , we need to put either φ_i or $\neg \varphi_i$ into Σ . Set $\Sigma_0 = \Sigma$.

We build the sequence $\Sigma_0 \subseteq \Sigma_1 \subseteq \ldots \subseteq \Sigma_i \subseteq \ldots$ as follows. By assumption Σ_0 is consistent. Consider φ_{n+1} :

• If
$$\Sigma_n \vdash \varphi_{n+1}$$
 then set $\Sigma_{n+1} = \Sigma_n \cup \{\varphi_{n+1}\}$.

• If
$$\Sigma_n \not\vdash \varphi_{n+1}$$
 then set $\Sigma_{n+1} = \Sigma_n \cup \{\neg \varphi_{n+1}\}$.

By the two corollaries, Σ_{n+1} is consistent. Let $\Sigma_{\infty} = \bigcup_{n \in \mathbb{N}} \Sigma_n$ (i.e., the union of Σ_n for all *n*). Then Σ_{∞} is consistent (why?).

By construction, for each φ_i , $\varphi_i \in \Sigma_{\infty}$ or $\neg \varphi_i \in \Sigma_{\infty}$. Therefore, Σ_{∞} is a complete extension of Σ .

Building a model for complete set Σ

Let Σ be a complete set. Since Σ is complete, for each $p \in P$, either $p \in \Sigma$ or $\neg p \in \Sigma$. Define $A_{\Sigma} : P \rightarrow \{$ **true**, **false** $\}$:

 $A_{\Sigma}(p) =$ true if $p \in \Sigma$, and otherwise $A_{\Sigma}(p) =$ false.

Let V_{Σ} be the valuation under A_{Σ} (i.e., $V_{\Sigma} = V_{A_{\Sigma}}$).

Now our intuition in the previous slide is formalized below: Σ is "the book of truth under A_{Σ} ".

Lemma

The mapping V_{Σ} has the following property. For all $\varphi \in FORM$:

 $\varphi \in \Sigma$ if and only if $V_{\Sigma}(\varphi) =$ true.

In particular A_{Σ} is a model of Σ .

Proof of the lemma (by induction on structure of φ **)**

If
$$\varphi = p \in P$$
, then $V_{\Sigma}(\varphi) = A_{\Sigma}(\varphi) =$ true iff $\varphi \in \Sigma$.

Case 1: $\varphi = \neg \psi$. We have the following:

$$\begin{split} \varphi \in \Sigma \Leftrightarrow \psi \not\in \Sigma \\ \Leftrightarrow V_{\Sigma}(\psi) = \mathsf{false} \\ \Leftrightarrow V_{\Sigma}(\varphi) = \mathsf{true} \end{split}$$

(completeness of Σ) (induction hypothesis) (def. of valuation) *Case 2*: $\varphi = \psi_1 \lor \psi_2$. We have the following:

 $\begin{array}{l} \varphi \in \Sigma \Leftrightarrow \psi_1 \in \Sigma \text{ or } \psi_2 \in \Sigma \\ \Leftrightarrow V_{\Sigma}(\psi_1) = \textbf{true or } V_{\Sigma}(\psi_2) = \textbf{true} \\ \Leftrightarrow V_{\Sigma}(\varphi) = \textbf{true} \end{array} \quad (\text{homework}) \\ (\text{induction hyp.}) \\ (\text{def. of valuation}) \end{array}$

Case 3: $\varphi = \psi_1 \& \psi_2$. Left to the reader.

Theorem (The Second Completeness Theorem)

A set of formulas Σ is consistent iff Σ has a model.

Proof.

Let Σ be consistent. Then it has a complete extension Σ' . By the lemma above, Σ' has a model. Hence Σ too has a model.

Assume that Σ has a model. Assume that Σ is inconsistent. Then $\Sigma \vdash \bot$. Then the model must make \bot **true** (why?). This is a contradiction.

The First Completeness Theorem

Theorem (The First Completeness Theorem)

If $\Sigma \models \varphi$ then $\Sigma \vdash \varphi$.

Proof.

Since $\Sigma \models \varphi$, we have $\Sigma \cup \{\neg \varphi\}$ has no model. So, $\Sigma \cup \{\neg \varphi\}$ is inconsistent. Hence, $\Sigma \vdash \varphi$.

Compactness Theorem

Theorem (Compactness Theorem)

If $\Sigma \models \varphi$ then there is a finite subset Σ_0 of Σ such that $\Sigma_0 \models \varphi$.

Proof.

The First Completeness Theorem implies $\Sigma \vdash \varphi$. So, there is a finite subset Σ_0 of Σ such that $\Sigma_0 \vdash \varphi$. This implies $\Sigma_0 \models \varphi$.

Corollary

 Σ has a model iff every finite subset of Σ has a model.

Proof.

The direction \rightarrow is clear. Every finite subset of Σ is consistent as it has a model. So, Σ is consistent. Thus, Σ has a model.

- $\Sigma \vdash \varphi$ iff $\Sigma \models \varphi$ (Soundness and Completeness). So \vdash and \models are equivalent concepts.
- If Σ ⊢ φ then there exists a finite subset Σ₀ ⊆ Σ such that Σ₀ ⊢ φ (Proofs are algorithmic).
- If Σ has a model iff all finite subsets Σ₀ ⊂ Σ have models (Compactness).