# Mathematical Foundations of computer science 

Lecture 6: First-order predicate logic

Speaker: Toru Takisaka

April 11, 2024

## Recap

Our first goal: formalize a "mathematician"

- Analysis target of Mathematician $\approx$ Formulas
- Mathematical assertions $\rightarrow$ Formulas
- Truth of assertions $\rightarrow$ Valuation function
- Mathematician $\approx$ those who write proofs of formulas
- Tools: axioms, assumptions, inference rules
- Proof $\rightarrow$ seq. of formulas from axioms/assump. to target, connected by inference rules
- Properties of Mathematician
- Soundness theorem: proved formulas are "true"
- Completeness theorem: "true" formulas can be proved


## Recap

There were two important notions, $\Sigma \models \varphi$ and $\Sigma \vdash \varphi$.

- $\Sigma \models \varphi$ ( $\Sigma$ logically implies $\varphi$ ) talks about the nature of the truth of formulas, which Mathematician wants to analyze. It is a semantic notion (it is about "the meaning" of formulas).
- $\Sigma \vdash \varphi$ ( $\varphi$ has a proof from $\Sigma$ ) talks about the possibility of inferring $\varphi$ from $\Sigma$, which Mathematician attempts. Recall inference is a syntactic operation (i.e., inference rules can be described at the grammatical level).

Excercise: Prove $\varphi \models \varphi \vee \psi$ and $\varphi \vdash \varphi \vee \psi$, and observe how different their proofs are.

## Recap

Soundness/completeness theorems say these notions coincide.

## Theorem (Soundness of proof structure)

$$
\Sigma \vdash \varphi \text { implies } \Sigma \models \varphi \text {. }
$$

The theorem roughly claims "correctness" of Mathematician: a proved formula under assumptions $\Sigma$ is true whenever $\Sigma$ is.

Theorem ((First) completeness of proof structure)

$$
\Sigma \models \varphi \text { implies } \Sigma \vdash \varphi \text {. }
$$

The theorem roughly claims the "capability" of Mathematician: They can prove any $\varphi$ from $\Sigma$ whenever $\Sigma$ logically implies $\varphi$.

## Our next goal

Now we finished Part 1 of the course. What's next?
$\rightarrow$ formalize Mathematician with higher resolution...ours is too simple


## Why too simple?

In Lecture 2, we said:
Formula = statement whose "correctness" can be argued

- "Dr. Takisaka is a professor"
- "Roses are blue"
- "1 + 1 = 3"

These formulas are atomic, i.e., they cannot be split into multiple formulas.
...but they are often too crude as the minimal parts of formulas.
In fact, they are made with subjects and predicates:

## Why too simple?

In Lecture 2, we said:
Formula = statement whose "correctness" can be argued

- "Dr. Takisaka is a professor"
- "Roses are blue"
- "1 + 1 = 3"

These formulas are atomic, i.e., they cannot be split into multiple formulas.
...but they are often too crude as the minimal parts of formulas.
In fact, they are made with subjects and predicates:

## The first step

As the first step, we "refine" the definition of formulas in the following way:

- Define terms (that formalize subjects),
- define predicates, and then
- define formulas by terms and predicates.

RECALL: when we define formulas, we do not consider "the meaning" of them yet; at first, they are just sequences of alphabets, and their truth etc. are given from outside.

## Subjects = terms

Terms = objects whose properties are argued

- " $n$ (which can be a number)", " $\varphi$ (which can be a propositional formula)", ... $\rightarrow$ Variables... represent undetermined objects
- "Dr. Takisaka", "Roses", "0"...
$\rightarrow$ Constant symbols... designate specific objects
- "1 +1", " $x+y$ ", "The father of Dr. Takisaka",... $\rightarrow$ Terms made via function symbols

Arity $=$ The number of inputs to a function symbol

- "+" is a binary (2-ary) function symbol
- "The father of" is a unary (1-ary) function symbol


## Formal definition of terms

Fix a set $F$ of function symbols. Constant symbols are realized as $\mathbf{0}$-ary function symbols (they accept the empty input).

## Definition (terms)

Terms are defined by induction:

- Every variable $x, y, z$, etc., is a term.
- Every constant symbol $c$ is a term.
- If $f$ is a function symbol in $F$ of arity $k$ and $t_{1}, \ldots, t_{k}$ are terms, then the expression $f\left(t_{1}, \ldots, t_{k}\right)$ is also a term.

For instance, imagine that $F$ has a unary function symbol $g$ and binary function symbol $f$. Then the following are terms:
$x, y, z, g(y), f(x, y), f(z, z), g(x), f(g(x), f(z, z)), f(x, f(g(y), z))$.

## Unique readability of terms

Similar to formulas in propositional logic, it is important to check the unique readability of terms; it can be done in a similar way as formulas.

## Predicates, languages

Predicates are just symbols with their arities.

- "is a professor" is a unary predicate
- "is blue" is a unary predicate
- "=" is a binary predicate

Sets of functions and predicate symbols constitute a language to describe formulas.

## Definition (language)

A language $L$ is the sequence

$$
f_{0}^{n_{0}}, \ldots, f_{t}^{n_{t}}, P_{0}^{m_{0}}, \ldots, P_{k}^{m_{k}}
$$

where $f_{j}^{n_{j}}$ is a function symbol of arity $n_{j}, j=1, \ldots, t$, and $P_{i}^{m_{i}}$ is a predicate symbol of arity $m_{i}, i=1, \ldots, k$.

[^0]
## Definition of formulas

## Definition (first-order predicate formula over language $L$ )

Base case (defines atomic, or equivalently base, formulas):

- Given terms $t_{1}, \ldots, t_{k}$ and a predicate $P \in L$ of relation $k$, the expression $P\left(t_{1}, \ldots, t_{k}\right)$ is a formula.
- The expression $\left(t_{1}=t_{2}\right)$ is a formula, $t_{1}$ and $t_{2}$ are terms. Inductive step:
- If $\phi$ and $\psi$ are formulas, then so are $(\phi \& \psi)$, $\neg \phi$, and $(\phi \vee \psi)$.
- If $\phi$ is a formula and $x$ is a variable, then $\forall x \phi$ and $\exists x \phi$ are formulas.
As in the propositional logic case, $(\phi \rightarrow \psi)$ stands for $(\neg \phi \vee \psi)$.
Similar to propositional logic, one can check predicate formulas are uniquely readable.


## Examples

- "Dr. Takisaka is a professor" could be formalized as a formula
IsProf(Dr. Takisaka),
where, IsProf is a unary predicate symbol and "Dr. Takisaka" is a constant symbol.
- "Any professor in China is over 20years old" could be formalized as a formula

$$
\forall x .((\operatorname{IsProf}(x) \wedge \operatorname{Is} \ln C h i n a(x)) \rightarrow \text { Over20 }(x))
$$

where, IsProf, IsInChina, and Over20 are unary predicate symbols.

## Examples

- "for any $n$, either $n$ or $n+1$ is an odd number" could be formalized as a formula

$$
\forall n .(\operatorname{IsOdd}(n) \vee \operatorname{IsOdd}(S(n)))
$$

where, $S$ is a unary function symbol, and $I s O d d$ is a unary predicate symbol.

- S...successor function symbol, which represents "the next number"
- The twin prime conjecture could be formalized as a formula

$$
\exists x . \forall y .(\operatorname{prime}(y) \wedge \operatorname{prime}(y+2) \rightarrow y \leq x)
$$

where, prime is a unary predicate symbol, and $\leq$ is a binary predicate symbol.

We have defined the syntax of formulas, i.e., the grammatical rules how formulas are constructed (once again, without talking about its "meaning"). Now we will formalize "their meaning", i.e., the semantics of formulas.

In propositional logic, semantics is given by a truth assignment. In predicate logic, we need to specify:

- the domain, which specifies the objects we talks about;
- functions that specify the meaning of function symbols;
- predicates that specify the meaning of predicate symbols.

These components constitute an (algebraic) structure.

## Domain

The domain $A$ (a.k.a. the universe) of a structure is simply any nonempty set.

- When you claim "Any professor is over 20years old", you may be talking about
- professors in UESTC ( $A=$ people in UESTC)
- professors in China ( $A=$ people in China)
- professors in the world ( $A=$ people in the world)
- When you claim "for any $n$, either $n$ or $n+1$ is an odd number", you may be talking about
- the property of natural numbers $(A=\mathbb{N})$
- the property of real numbers $(A=\mathbb{R})$

Let $A$ be a set (finite or infinite). Define

$$
A^{k}=\left\{\left(a_{1}, \ldots, a_{k}\right) \mid a_{1}, \ldots, a_{k} \in A\right\}
$$

This is the set of all $k$-tuples on $A$.
For $k=0$, we have $A^{0}=\{()\}$.
If $A$ has cardinality $n \geq 1$, then the cardinality of the set $A^{k}$ is $n^{k}$.
A relation of arity $k$ on $A$ is any subset of $A^{k}$. On $n$ element set $A$ there are exactly $2^{n^{k}}$ relations of arity $k$.

## Relations as Boolean valued functions

Relations $R$ of arity $k$ on $A$ are $k$-variable Boolean-valued functions on variables ( $x_{1}, \ldots, x_{k}$ ). The variables range over $A$.

Namely, for all $x_{1}, \ldots, x_{k} \in A$, we have this:
$R\left(x_{1}, \ldots, x_{k}\right)=$ true if $\left(x_{1}, \ldots, x_{k}\right) \in R$, and
$R\left(x_{1}, \ldots, x_{k}\right)=$ false if $\left(x_{1}, \ldots, x_{k}\right) \notin R$.
Example: Edge relation $E$ on graph $G=(V, E)$ defines the Boolean valued function:
$E(x, y)=$ true if $(x, y) \in E$,
$E(x, y)=$ false otherwise.

## Equivalence relations

A binary relation $R$ on $A$ is a subset of $A^{2}$.
The relation $R$ is an equivalence relation if for all $x, y, z \in A$ :

- $(x, x) \in R$ (reflexivity).
- If $(x, y) \in R$ then $(y, x) \in R$ (symmetry).
- If $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$ (transitivity).

For an $x \in A$, the equivalence class of $x$, written $[x]$, is:

$$
[x]=\{y \in A \mid(x, y) \in R\} .
$$

## Binary relations: partial orders

The relation $R$ on $A$ is a partial order on $A$ if for all $x, y, z \in A$ :

- $(x, x) \in R$ (reflexivity).
- If $(x, y) \in R$ and $(y, x) \in R$ then $x=y$ (antisymmetry).
- If $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$ (transitivity).

We often write $x \leq y$ to indicate $(x, y) \in R$.
So, we use the infix notation by replacing $R$ with the symbol $\leq$.

## Operations

A $k$-ary (or $k$-place) operation on a set $A$ is a mapping

$$
f: A^{k} \rightarrow A
$$

We postulate that the value $f\left(a_{1}, \ldots, a_{k}\right)$ is always defined. In this sense, all our operations are total.

When $k=0$, the domain of $f: A^{0} \rightarrow A$ is the set $\{()\}$. So, such a function is just an element in $A$ that we call a constant.

## Algebraic structures

## Definition

An algebraic structure (or simply structure) $\mathcal{A}$ is a tuple:

$$
\left(A ; P_{0}^{m_{0}}, \ldots, P_{k}^{m_{k}}, f_{0}^{n_{0}}, \ldots, f_{t}^{n_{t}}\right),
$$

where:

- $A$ is a non-empty set called the domain of the structure,
- Each $P_{i}^{m_{i}}, i=1, \ldots, k$, is a relation of arity $m_{i}$ on $A$, and
- Each $f_{j}^{n_{j}}, j=1, \ldots, t$, is an operation of arity $n_{j}$ on $A$.


## Examples of algebraic structures

(1) Directed graphs $(V ; E)$.
(2) Simple graphs $(V ; E)$.
(3) ( $\mathbb{N} ; S, \leq$ ), where $\mathbb{N}=\{0,1,2, \ldots\}, S(x)=x+1$, and $\leq$ is the less or equal to relation on $\mathbb{N}$.
(9) The Presburger arithmetic $(\mathbb{N} ; S,+, 0, \leq)$.
(0) The arithmetic $(\mathbb{N} ; S,+, \times, 0, \leq)$.
(0) Consider the structure $(P(X) ; \cup, \cap, \neg)$, where the domain $P(X)$ is the set of all subsets of $X, \cap$ is the intersection operation, $\neg$ is the complementation operation, and $\cup$ is the union operation. These are called Boolean algebras.


[^0]:    * function and predicate symbols are also called operation and relation symbols, respectively.

