
Mathematical Foundations of
computer science

Lecture 6: First-order predicate logic

Speaker: Toru Takisaka

April 11, 2024

1 / 24

Toru Takisaka Mathematical Foundations of computer science



Recap

Our first goal: formalize a “mathematician”

Analysis target of Mathematician ≈ Formulas
Mathematical assertions → Formulas
Truth of assertions → Valuation function

Mathematician ≈ those who write proofs of formulas
Tools: axioms, assumptions, inference rules
Proof → seq. of formulas from axioms/assump. to target,
connected by inference rules

Properties of Mathematician
Soundness theorem: proved formulas are “true”
Completeness theorem: “true” formulas can be proved

2 / 24

Toru Takisaka Mathematical Foundations of computer science



Recap

There were two important notions, Σ |= φ and Σ ⊢ φ.

Σ |= φ (Σ logically implies φ) talks about the nature of the
truth of formulas, which Mathematician wants to analyze. It
is a semantic notion (it is about “the meaning” of formulas).

Σ ⊢ φ (φ has a proof from Σ) talks about the possibility of
inferring φ from Σ, which Mathematician attempts. Recall
inference is a syntactic operation (i.e., inference rules can
be described at the grammatical level).

Excercise: Prove φ |= φ ∨ ψ and φ ⊢ φ ∨ ψ, and observe how
different their proofs are.

3 / 24

Toru Takisaka Mathematical Foundations of computer science



Recap

Soundness/completeness theorems say these notions coincide.

Theorem (Soundness of proof structure)

Σ ⊢ φ implies Σ |= φ.

The theorem roughly claims “correctness” of Mathematician:
a proved formula under assumptions Σ is true whenever Σ is.

Theorem ((First) completeness of proof structure)

Σ |= φ implies Σ ⊢ φ.

The theorem roughly claims the “capability” of Mathematician:
They can prove any φ from Σ whenever Σ logically implies φ.

4 / 24

Toru Takisaka Mathematical Foundations of computer science



Our next goal

Now we finished Part 1 of the course. What’s next?

→ formalize Mathematician with higher resolution...ours is too simple

5 / 24

Toru Takisaka Mathematical Foundations of computer science



Why too simple?

In Lecture 2, we said:

Formula = statement whose “correctness” can be argued
“Dr. Takisaka is a professor”
“Roses are blue”
“1 + 1 = 3”

These formulas are atomic, i.e., they cannot be split into
multiple formulas.

...but they are often too crude as the minimal parts of formulas.

In fact, they are made with subjects and predicates:

6 / 24

Toru Takisaka Mathematical Foundations of computer science



Why too simple?

In Lecture 2, we said:

Formula = statement whose “correctness” can be argued
“Dr. Takisaka is a professor”
“Roses are blue”
“1 + 1 = 3”

These formulas are atomic, i.e., they cannot be split into
multiple formulas.

...but they are often too crude as the minimal parts of formulas.

In fact, they are made with subjects and predicates:

7 / 24

Toru Takisaka Mathematical Foundations of computer science



The first step

As the first step, we “refine” the definition of formulas in the
following way:

Define terms (that formalize subjects),

define predicates, and then

define formulas by terms and predicates.

RECALL: when we define formulas, we do not consider “the
meaning” of them yet; at first, they are just sequences of
alphabets, and their truth etc. are given from outside.

8 / 24

Toru Takisaka Mathematical Foundations of computer science



Subjects = terms

Terms = objects whose properties are argued
“n (which can be a number)”, “ φ (which can be a propositional formula)”, ...

→ Variables... represent undetermined objects

“Dr. Takisaka”, “Roses”, “0”...
→ Constant symbols... designate specific objects

“1 + 1”, “x + y ”, “The father of Dr. Takisaka”,...
→ Terms made via function symbols

Arity = The number of inputs to a function symbol
“+” is a binary (2-ary) function symbol
“The father of” is a unary (1-ary) function symbol

9 / 24

Toru Takisaka Mathematical Foundations of computer science



Formal definition of terms

Fix a set F of function symbols. Constant symbols are
realized as 0-ary function symbols (they accept the empty input).

Definition (terms)
Terms are defined by induction:

Every variable x , y , z, etc., is a term.
Every constant symbol c is a term.
If f is a function symbol in F of arity k and t1, . . ., tk are
terms, then the expression f (t1, . . . , tk ) is also a term.

For instance, imagine that F has a unary function symbol g and
binary function symbol f . Then the following are terms:

x , y , z, g(y), f (x , y), f (z, z), g(x), f (g(x), f (z, z)), f (x , f (g(y), z)).

10 / 24

Toru Takisaka Mathematical Foundations of computer science



Unique readability of terms

Similar to formulas in propositional logic, it is important to check
the unique readability of terms; it can be done in a similar way
as formulas.

11 / 24

Toru Takisaka Mathematical Foundations of computer science



Predicates, languages
Predicates are just symbols with their arities.

“is a professor” is a unary predicate
“is blue” is a unary predicate
“=” is a binary predicate

Sets of functions and predicate symbols constitute a language
to describe formulas.

Definition (language)
A language L is the sequence

f n0
0 , . . . , f nt

t ,P
m0
0 , . . . ,Pmk

k ,

where f nj
j is a function symbol of arity nj , j = 1, . . . , t ,

and Pmi
i is a predicate symbol of arity mi , i = 1, . . . , k .

* function and predicate symbols are also called operation and relation symbols, respectively.

12 / 24

Toru Takisaka Mathematical Foundations of computer science



Definition of formulas

Definition (first-order predicate formula over language L)

Base case (defines atomic, or equivalently base, formulas):
Given terms t1, . . ., tk and a predicate P ∈ L of relation k ,
the expression P(t1, . . . , tk ) is a formula.
The expression (t1 = t2) is a formula, t1 and t2 are terms.

Inductive step:
If ϕ and ψ are formulas, then so are (ϕ & ψ), ¬ϕ, and
(ϕ ∨ ψ).
If ϕ is a formula and x is a variable, then ∀xϕ and ∃xϕ are
formulas.

As in the propositional logic case, (ϕ→ ψ) stands for (¬ϕ ∨ ψ).

Similar to propositional logic, one can check predicate formulas
are uniquely readable.

13 / 24

Toru Takisaka Mathematical Foundations of computer science



Examples

“Dr. Takisaka is a professor” could be formalized as a
formula

IsProf (Dr. Takisaka),

where, IsProf is a unary predicate symbol and “Dr.
Takisaka” is a constant symbol.

“Any professor in China is over 20years old” could be
formalized as a formula

∀x .
(
(IsProf (x) ∧ IsInChina(x)) → Over20(x)

)
,

where, IsProf , IsInChina, and Over20 are unary predicate
symbols.

14 / 24

Toru Takisaka Mathematical Foundations of computer science



Examples

“for any n, either n or n + 1 is an odd number” could be
formalized as a formula

∀n.
(

IsOdd(n) ∨ IsOdd(S(n))
)
,

where, S is a unary function symbol, and IsOdd is a unary
predicate symbol.

S...successor function symbol, which represents “the next number”

The twin prime conjecture could be formalized as a formula

∃x .∀y .
(

prime(y) ∧ prime(y + 2) → y ≤ x
)
,

where, prime is a unary predicate symbol, and ≤ is a
binary predicate symbol.

15 / 24

Toru Takisaka Mathematical Foundations of computer science



We have defined the syntax of formulas, i.e., the grammatical
rules how formulas are constructed (once again, without talking
about its “meaning”). Now we will formalize “their meaning”,
i.e., the semantics of formulas.

In propositional logic, semantics is given by a truth assignment.
In predicate logic, we need to specify:

the domain, which specifies the objects we talks about;

functions that specify the meaning of function symbols;

predicates that specify the meaning of predicate symbols.

These components constitute an (algebraic) structure.

16 / 24

Toru Takisaka Mathematical Foundations of computer science



Domain

The domain A (a.k.a. the universe) of a structure is simply any
nonempty set.

When you claim “Any professor is over 20years old”, you
may be talking about

professors in UESTC (A = people in UESTC)
professors in China (A = people in China)
professors in the world (A = people in the world)

When you claim “for any n, either n or n + 1 is an odd
number”, you may be talking about

the property of natural numbers (A = N)
the property of real numbers (A = R)

17 / 24

Toru Takisaka Mathematical Foundations of computer science



Relations

Let A be a set (finite or infinite). Define

Ak = {(a1, . . . ,ak ) | a1, . . . ,ak ∈ A}.

This is the set of all k -tuples on A.
For k = 0, we have A0 = {()}.

If A has cardinality n ≥ 1, then the cardinality of the set Ak is nk .

A relation of arity k on A is any subset of Ak . On n element set
A there are exactly 2nk

relations of arity k .

18 / 24

Toru Takisaka Mathematical Foundations of computer science



Relations as Boolean valued functions

Relations R of arity k on A are k -variable Boolean-valued
functions on variables (x1, . . . , xk ). The variables range over A.

Namely, for all x1, . . . , xk ∈ A, we have this:
R(x1, . . . , xk ) = true if (x1, . . . , xk ) ∈ R, and
R(x1, . . . , xk ) = false if (x1, . . . , xk ) ̸∈ R.

Example: Edge relation E on graph G = (V ,E) defines the
Boolean valued function:

E(x , y) = true if (x , y) ∈ E ,
E(x , y) = false otherwise.

19 / 24

Toru Takisaka Mathematical Foundations of computer science



Equivalence relations

A binary relation R on A is a subset of A2.

The relation R is an equivalence relation if for all x , y , z ∈ A:
(x , x) ∈ R (reflexivity).
If (x , y) ∈ R then (y , x) ∈ R (symmetry).
If (x , y) ∈ R and (y , z) ∈ R then (x , z) ∈ R (transitivity).

For an x ∈ A, the equivalence class of x , written [x ], is:

[x ] = {y ∈ A | (x , y) ∈ R}.

20 / 24

Toru Takisaka Mathematical Foundations of computer science



Binary relations: partial orders

The relation R on A is a partial order on A if for all x , y , z ∈ A:

(x , x) ∈ R (reflexivity).
If (x , y) ∈ R and (y , x) ∈ R then x = y (antisymmetry).
If (x , y) ∈ R and (y , z) ∈ R then (x , z) ∈ R (transitivity).

We often write x ≤ y to indicate (x , y) ∈ R.
So, we use the infix notation by replacing R with the symbol ≤.

21 / 24

Toru Takisaka Mathematical Foundations of computer science



Operations

A k -ary (or k -place) operation on a set A is a mapping

f : Ak → A.

We postulate that the value f (a1, . . . ,ak ) is always defined. In
this sense, all our operations are total.

When k = 0, the domain of f : A0 → A is the set {()}. So, such
a function is just an element in A that we call a constant.

22 / 24

Toru Takisaka Mathematical Foundations of computer science



Algebraic structures

Definition
An algebraic structure (or simply structure) A is a tuple:

(A;Pm0
0 , . . . ,Pmk

k , f n0
0 , . . . , f nt

t ),

where:
A is a non-empty set called the domain of the structure,
Each Pmi

i , i = 1, . . . , k , is a relation of arity mi on A, and

Each f nj
j , j = 1, . . . , t , is an operation of arity nj on A.

23 / 24

Toru Takisaka Mathematical Foundations of computer science



Examples of algebraic structures

1 Directed graphs (V ;E).
2 Simple graphs (V ;E).
3 (N;S,≤), where N = {0,1,2, . . .}, S(x) = x + 1, and ≤ is

the less or equal to relation on N.
4 The Presburger arithmetic (N;S,+,0,≤).
5 The arithmetic (N;S,+,×,0,≤).
6 Consider the structure (P(X );∪,∩,¬), where the domain

P(X ) is the set of all subsets of X , ∩ is the intersection
operation, ¬ is the complementation operation, and ∪ is
the union operation. These are called Boolean algebras.

24 / 24

Toru Takisaka Mathematical Foundations of computer science


