Mathematical Foundations of computer science

Lecture 7: First-order predicate logic (continued)

Speaker: Toru Takisaka

April 16, 2024

Recap

Current goal: formalize Mathematician with higher resolution

- We construct atomic propositions from terms / predicates
- Today: what are truth values of predicate formulas?

Mathematician

Recap: from propositional logic to predicate logic

In Lecture 2, we said:
Formula = statement whose "correctness" can be argued

- "Dr. Takisaka is a professor"
- "Roses are blue"
- "1 + $1=3 "$

These formulas are atomic, i.e., they cannot be split into multiple formulas.
...but they are often too crude as the minimal parts of formulas.
In fact, they are made with subjects and predicates:

Recap: terms and predicates

Terms = objects whose properties are argued

- " n (which can be a number)", " φ (which can be a propositional formula)", ... \rightarrow Variables... represent undetermined objects
- "Dr. Takisaka", "Roses", "0"...
\rightarrow Constant symbols... designate specific objects
- " $1+1$ ", " $x+y$ ", "The father of Dr. Takisaka",... \rightarrow Terms made via function symbols

Predicates are just symbols with their arities (num. of inputs).

- "is a professor" is a unary predicate
- "is blue" is a unary predicate
- "=" is a binary predicate

Recap: predicate formulas

Now " t_{1}, \ldots, t_{k} satisfy P " is written as $P\left(t_{1}, \ldots, t_{k}\right)$, where t_{1}, \ldots, t_{k} are terms and P is a k-ary predicate.

Definition (first-order predicate formula over language L)

Base case (defines atomic, or equivalently base, formulas):

- Given terms t_{1}, \ldots, t_{k} and a predicate $P \in L$ of relation k, the expression $P\left(t_{1}, \ldots, t_{k}\right)$ is a formula.
- The expression $\left(t_{1}=t_{2}\right)$ is a formula, t_{1} and t_{2} are terms. Inductive step:
- If ϕ and ψ are formulas, then so are $(\phi \& \psi)$, $\neg \phi$, and $(\phi \vee \psi)$.
- If ϕ is a formula and x is a variable, then $\forall x \phi$ and $\exists x \phi$ are formulas.
As in the propositional logic case, $(\phi \rightarrow \psi)$ stands for $(\neg \phi \vee \psi)$.

Examples

- "Dr. Takisaka is a professor" could be formalized as a formula
IsProf(Dr. Takisaka),
where, IsProf is a unary predicate symbol and "Dr. Takisaka" is a constant symbol.
- "Any professor in China is over 20years old" could be formalized as a formula

$$
\forall x .((\operatorname{IsProf}(x) \wedge \operatorname{Is} \ln C h i n a(x)) \rightarrow \text { Over20 }(x))
$$

where, IsProf, IsInChina, and Over20 are unary predicate symbols.

Examples

- "for any n, either n or $n+1$ is an odd number" could be formalized as a formula

$$
\forall n .(\operatorname{IsOdd}(n) \vee \operatorname{IsOdd}(S(n)))
$$

where, S is a unary function symbol, and $I s O d d$ is a unary predicate symbol.

- S...successor function symbol, which represents "the next number"
- The twin prime conjecture could be formalized as a formula

$$
\exists x . \forall y .(\operatorname{prime}(y) \wedge \operatorname{prime}(y+2) \rightarrow y \leq x)
$$

where, prime is a unary predicate symbol, and \leq is a binary predicate symbol.

Recap: Algebraic structures

Definition

An algebraic structure (or simply structure) \mathcal{A} is a tuple:

$$
\left(A ; P_{0}^{m_{0}}, \ldots, P_{k}^{m_{k}}, f_{0}^{n_{0}}, \ldots, f_{t}^{n_{t}}\right)
$$

where:

- A is a non-empty set called the domain of the structure,
- Each $P_{i}^{m_{i}}, i=1, \ldots, k$, is a relation of arity m_{i} on A, and
- Each $f_{j}^{n_{j}}, j=1, \ldots, t$, is an operation of arity n_{j} on A.
- Domain = the set of objects we want to talk about
- relations = the meaning of predicate symbols
- functions = the meaning of function symbols

Examples

"Any professor in China is over 20years old" could be formalized as a formula

$$
\forall x .((\operatorname{IsProf}(x) \wedge \operatorname{Is} \ln C h i n a(x)) \rightarrow \text { Over20 }(x))
$$

The language $L=($ IsProf, IsInChina, Over20) can write it.
${\text { The structure } \mathcal{A}=\left(H ; \text { IsProf }_{\mathcal{A}}, I \text { IsInChina }\right.}_{\mathcal{A}},{\left.\text { Over } 20_{\mathcal{A}}\right) \text { would be }}$ an intended structure, where

- H is the set of humans (say, who were alive at a certain timestamp),
- $\operatorname{IsProf}_{\mathcal{A}} \subseteq H$ is the set of professors in H (say, at that timestamp),
- IsInChina $\mathcal{A}_{\mathcal{A}} \subseteq H$ is the set of residents in China in H, and
- Over $20_{\mathcal{A}} \subseteq H$ is the set of humans in H that are over 20 years old.

Examples

"for any n, either n or $n+1$ is an odd number" could be formalized as a formula

$$
\forall n .(\operatorname{IsOdd}(n) \vee \operatorname{IsOdd}(S(n)))
$$

The language $L=(S, I s O d d)$ can write it.
An intended structure would be $\mathcal{A}=\left(\mathbb{N} ; S_{\mathcal{A}}\right.$, lsOdd $\left._{\mathcal{A}}\right)$, where

- \mathbb{N} is the set of natural numbers,
- $S_{\mathcal{A}}: \mathbb{N} \rightarrow \mathbb{N}$ is a function such that $S_{\mathcal{A}}(n)=n+1$, and
- IsOdd $_{\mathcal{A}} \subseteq \mathbb{N}$ is a unary relation such that

$$
\operatorname{lsOdd}_{\mathcal{A}}=\{n \in \mathbb{N} \mid n \neq m+m \quad \text { for any } m \in \mathbb{N}\}
$$

Examples

The twin prime conjecture could be formalized as a formula

$$
\exists x . \forall y .(\operatorname{prime}(y) \wedge \operatorname{prime}(S(S(y))) \rightarrow y \leq x)
$$

The language $L=(S, \leq$, prime $)$ can write it.
We can consider a structure $\mathcal{A}=\left(\mathbb{N} ; S_{\mathcal{A}}, \leq_{\mathcal{A}}\right.$, prime $\left._{\mathcal{A}}\right)$, where

- \mathbb{N} and $S_{\mathcal{A}}$ are as in the previous slide,
- $\leq_{\mathcal{A}} \subseteq \mathbb{N}^{2}$ is a binary relation such that

$$
\leq_{\mathcal{A}}=\left\{(n, m) \in \mathbb{N}^{2} \mid n+n^{\prime}=m \quad \text { for some } n^{\prime} \in \mathbb{N}\right\}
$$

- prime $_{\mathcal{A}} \subseteq \mathbb{N}$ is a unary relation such that

$$
\begin{aligned}
\operatorname{prime}_{\mathcal{A}}=\{n \in \mathbb{N} \mid & \text { for any } m_{1}, m_{2} \in \mathbb{N}, \\
& \text { if } \left.m=m_{1} \cdot m_{2} \text { then } m_{1}=1 \text { or } m_{2}=1\right\} .
\end{aligned}
$$

Now we are almost ready to formalize what we mean by saying "a statement φ is true" in predicate logic.

We still need a couple of additional setup to this end; we will explain these things while formalizing above.

free variables and bound variables

After specifying a structure, the truth of some formulas are still undetermined.

- Consider a formula $\operatorname{IsOdd}(n)$ with the structure as given in p10. Thus it could read "a natural number n is odd".
\rightarrow We cannot determine the truth of this formula, as it depends on what n is.
- Consider a formula $\exists n$. IsOdd (n) with the same structure. Thus it could read "there exists an odd natural number n ".
\rightarrow the truth of this formula should be determined, because the meaning of n is bound by the prefix "there exists".
n in the first formula is free; n in the second is bound.

free variables and bound variables

A subformula of a formula φ is a formula that appears in φ (see textbook for a formal definition).

Ex.) Subformulas of $\psi \equiv(\exists x \cdot P(x) \vee \neg Q(y))$ are

$$
\psi, \exists x . P(x), P(x), \neg Q(y), \text { and } Q(y) .
$$

An occurrence of a variable x in φ is bound in φ if there is a subformula φ^{\prime} of φ as below; otherwise, it is free in φ.

- φ^{\prime} is either of the form $\varphi^{\prime} \equiv \forall x . \psi$ or $\varphi^{\prime} \equiv \exists x . \psi$, and
- the x under consideration occurs in ψ.

Ex.) In ψ above, (the unique occurrence off the variable x in ψ is bound, and y is free.

A formula is called a sentence if it has no free variable.

Truth of atomic sentences

An atomic formula $P\left(t_{1}, \ldots, t_{k}\right)$ is a sentence if and only if there is no occurrence of a variable in t_{1}, \ldots, t_{k}.

Terms that do not contain variables are called ground terms; once a structure \mathcal{A} is fixed, a ground term t designates an element $t^{\mathcal{A}}$ in the domain of \mathcal{A} (see textbook for a formal definition).

Also recall \mathcal{A} gives the meaning of P by the relation $P^{\mathcal{A}}$ (Intuitively, $\vec{t} \in P^{\mathcal{A}}$ means " \vec{t} satisfies P under \mathcal{A} ").

We say $P\left(t_{1}, \ldots, t_{k}\right)$ is true under a structure \mathcal{A} if and only if

$$
\left(t_{1}^{\mathcal{A}}, \ldots, t_{k}^{\mathcal{A}}\right) \in P^{\mathcal{A}} .
$$

Examples

For a constant symbol "Dr. Takisaka" and a unary function symbol FatherOf, the following is a ground term:

> FatherOf(Dr. Takisaka)

Once a structure is fixed, it designates an element of domain (under an appropriate structure, it would designate the father of Dr. Takisaka).

For a unary predicate IsProf, the following is a sentence:
IsProf(FatherOf(Dr. Takisaka))

If the structure of IsProf is as in P9, then the sentence above is true if and only if the father of Dr. Takisaka is a professor.

Examples

Consider a language ($\overline{0}, S,+, \leq$), which typically represents the arithmetic over natural numbers:

- $\overline{0}$ is a constant symbol
- S is a unary function symbol
- + is a binary function symbol (write $n+m$ instead of $+(n, m)$)
- \leq is a binary predicate symbol (write $n \leq m$ instead of $\leq(n, m)$)
$\overline{0}, S(\overline{0}), S(S(\overline{0})), S(S(\overline{0}))+S(S(\overline{0}))$ are all ground terms
(under the standard structure, they designate natural numbers $0,1,2,4$, respectively).
$\overline{0} \leq S(\overline{0}), S(\overline{0})+S(\overline{0})=S(S(\overline{0}))$ are atomic sentences (both are true under the standard structure).

Truth of $t_{1}=t_{2}$, and composite formulas

For ground terms t_{1} and t_{2}, the formula $t_{1}=t_{2}$ is true under \mathcal{A} if and only if $t_{1}^{\mathcal{A}}$ and $t_{2}^{\mathcal{A}}$ are the same element of the domain.

- Or alternatively, we can say "=" is a binary predicate that must always be interpreted as the equality relation:

$$
=\mathcal{A}=\{(x, x) \mid x \in A\} \quad(A \text { is the domain of } \mathcal{A})
$$

The truth value of $\neg \varphi,(\varphi \vee \psi)$ and $(\varphi \wedge \psi)$ are defined in the similar way to propositional logic.

Substitution of variables in a formula

When we are interested in a formula φ and variables x_{1}, \ldots, x_{k} that freely occur in φ, we also write $\varphi\left(x_{1}, \ldots, x_{k}\right)$ to denote φ.

We write $\varphi(t)$ to denote the formula obtained by substituting each *free* occurrence of x in $\varphi(x)$ with the term t.

- If $\varphi(x) \equiv \forall x . P(x) \vee Q(x)$, then $\varphi(t) \equiv \forall x \cdot P(x) \vee Q(t)$, because x in $\forall x . P(x)$ is bound.

CAUTION: The term t may have free variables in it. These variables must not be bound as a result of substitution.

- If $\psi(x) \equiv \forall y .(P(x) \vee Q(y))$ and $t \equiv y$, then you cannot do $\psi(t)$ (you can take $\psi^{\prime} \equiv \forall z .\left(P(x) \vee Q(z)\right.$) instead and do $\psi^{\prime}(t)$).

Truth of $\forall x \cdot \varphi(x)$ and $\exists x \cdot \varphi(x)$

Intuitively, we would like to say $\forall x . \varphi(x)$ is true under a structure \mathcal{A} if and only if " $\varphi(a)$ is true" for all element a of the domain.
But what is $\varphi(a)$? a is not a term, so $\varphi(a)$ is not a formula.

- Consider the language $(\overline{0}, S,+, \leq)$. The formula $\forall n . n \leq n$ should be clearly true under the standard structure \mathcal{A}, because we have $0 \leq^{\mathcal{A}} 0,1 \leq^{\mathcal{A}} 1,2 \leq^{\mathcal{A}} 2$, and so on.

But our language cannot write formulas like " $1 \leq 1$ " and " $2 \leq 2$ " because 1 and 2 are not in it.

Solution: Augment the language with new constant symbols.

Truth of $\forall x \cdot \varphi(x)$ and $\exists x \cdot \varphi(x)$

If our language is $L=(\overline{0}, S,+, \leq)$ and we consider the standard structure \mathcal{A} (whose domain is \mathbb{N}), then

- consider $L_{\mathcal{A}}=\left(\overline{0}, S,+, \leq, 0^{*}, 1^{*}, 2^{*}, \ldots\right)$;
- consider the structure \mathcal{A}^{*} for $L_{\mathcal{A}}$ that assigns 0 to $0^{*}, 1$ to $1^{*} \ldots$, and assigns the same functions as \mathcal{A} to $\overline{0}, S,+, \leq$;
- say $\forall n . n \leq n$ is true under \mathcal{A} if and only if $n^{*} \leq n^{*}$ is true under \mathcal{A}^{*} for any $n \in \mathbb{N}$ (indeed it is, check it).

Truth of $\forall x \cdot \varphi(x)$ and $\exists x \cdot \varphi(x)$

More generally, let $\forall x . \varphi(x)$ and $\exists x . \varphi(x)$ be sentences over a language L, let \mathcal{A} be its structure, and let A be the domain of \mathcal{A}. The truth of these sentences are defined in the following way:

- Define a new language $L_{\mathcal{A}}$ by adding a new constant symbol a^{*} to L, for each $a \in A$.
- Let \mathcal{A}^{*} be a structure for $L_{\mathcal{A}}$ that assigns a to a^{*}, for each $a \in \mathcal{A}$; and assigns the same function/relation as \mathcal{A} for each function/predicate symbol in L.
- say $\forall x . \varphi(x)$ is true under \mathcal{A} if and only if $\varphi\left(a^{*}\right)$ is true under \mathcal{A}^{*} for any $a \in A$.
say $\exists x . \varphi(x)$ is true under \mathcal{A} if and only if $\varphi\left(a^{*}\right)$ is true under \mathcal{A}^{*} for some $a \in A$.

