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@ Introduction: Quasi-isometry between colored metric spaces
@ Structure of <g;

e Lemmas: small cross-over, decomposition, reduction
e Structure theorems: infinite chain, infinite antichain, density, etc.

@ Problems on <g7

e Biichi automata and large scale geometries
o Complexity of the quasi-isometry problem
o Asymptotic cones

2/44



This talk is based on the following papers:

e Bakh Khoussainov, Toru Takisaka: Large Scale Geometries of Infinite
Strings. Proc. LICS 2017.

e Bakh Khoussainov, Toru Takisaka: Infinite Strings and Their Large
Scale Properties. Submitted.

The slide is available at my webpage

@ http://group-mmm.org/ toru/
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Quasi-isometries

Let (Mi,d1) and (Mo, ds) be metric spaces.

Definition

A map f: My — My is an (A, B,C')—quasi-isometry, where A > 1,
B >0andC >0, if for all z,y € My, we have

(1/A) - di(z,y) — B < do(f (), f(y)) < A-da(,y) + B,

and for all y € My there is an = € M such that da(y, f(x)) < C.

When B = 0, the mapping is bi-Lipshitz. Thus, a quasi-isometry is a
bi-Lipschitz map with a distortion.
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ETNTIES

Definition
A map f: My — My is an (A, B, C)—quasi-isometry, where A > 1,
B>0andC >0, if for all x,y € My we have

(1/4) - di(z,y) — B < da(f(x), f(y)) < A-d(z,y) + B,

and for all y € My there is an © € M, such that da(y, f(x)) < C.

v

R and Z are quasi-isometric.

@ The function f(n) =nis a (1,0, 1)—quasi-isometry from Z to R.
@ The function g(x) = [z] is a (1, 1,0)—quasi-isometry from R to Z.
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Definition

A map f: My — M, is an (A, B, C')—quasi-isometry, where A > 1,
B >0 and C >0, if for all z,y € My we have

(1/A) - di(z,y) — B < dao(f (), f(y)) < A-da(z,y) + B,

and for all y € My there is an x € M, such that ds(y, f(z)) < C.

| N\

Example

Let G be a finitely generated group, and S and S’ be its generators. Then
the Cayley graphs of G based on S and S’ are quasi-isometric.

\

Proof sketch: if |g|s = n, then |g|sr < Mn, where M = maxseg |s|s.
Thus the identity map on G is a quasi-isometry.
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Why do we need quasi-isometries

The notion has been proposed by Gromov for the study of geometric group
theory.

Studying quasi-isometry (QI) invariants of groups turned out to be crucial
in solving many important problems. Hence, finding Ql-invariants is an
important theme in geometric group theory. Here are examples of
Ql-invariants:

@ virtually nilpotent,

@ virtually free,

© hyperbolic,

@ having polynomial growth rate,
@ Finite presentability,

O Having decidable word problem,

@ Asymptotic cones, etc.
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Infinite strings as coloured metric spaces

A coloured metric space is a tuple M = (M;d,C'), where (M, d) is the
metric space, and C'is a colour function C' : M — X. If 0 = C(m) then m
has colour .

Example

Consdier X%, the set of infinite strings over ¥. Each o € X% is a coloured
metric space.

Definition
Let My = (My;dy,Cy) and My = (Ma;da, Cy) be coloured metric

spaces. A colour preserving (A, B, C')—quasi-isometry from (Mj;d;) into
(My;ds) is a (A, B,C')—quasi-isometry from M into M.

| \

If there exists such a function from My to My, then we write
My <qgr Ma.
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The relation <g;

0“ <@r (01)“ holds. The converse does not hold.

@ Define a function f: 04 — (01)¥ by f(2n) = f(2n + 1) = 2n.
@ There is no colour-preserving function from (01)“ to 0%.

01001...0"1... <gr (01)* holds. The converse does not hold.
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Large scale geometries

Definition

The equivalence classes of ~q; are the quasi-isometry types or the large
scale geometries of a. Set ¥¢); = X/ ~qy. Denote by [a] the large
scale geometry of a.

| N\

Example

The QI type [(01)“] is the set of all binary strings such that, for some
constant M, any of its subsequence of the length M contains 0 and 1.

From now on, every coloured metric space that appear in the talk is an
infinite string, which is denoted by «, 3,7, ...
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@ Introduction: Quasi-isometry between colored metric spaces
@ Structure of <gr

o Lemmas: small cross-over, decomposition, reduction

@ Structure theorems: infinite chain, infinite antichain, density, etc.
@ Problems on <g;

e Biichi automata and large scale geometries
e Complexity of the quasi-isometry problem
e Asymptotic cones
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Small Cross-Over Lemma

Lemma (Small Cross Over Lemma)

For any given quasi-isometry constants (A, B, C') there are constants
D <0 and D’ <0 such that for all quasi-isometry maps g : a — (3 we
have the following:

Q Foralln,m € w ifn <m and g(m) < g(n) we have
g(m) —g(n) = D.
@ Foralln,m € w ifn <m and g(m) < g(n) thenn —m > D'.

Proof idea:

g(m) g(n)

B

12 / 44



Decomposition Lemma

Lemma (Decomposition Lemma)

There exists a procedure that given (A, B, C)—quasi-isometry f : o — 3

produces a decompositon of f into quasi-isometries £> Y1 f—2> Y2 ﬁ) B8

such that each of the following holds:

@ f1 is a bijection, fy is a monotonic injection, and f3 is a monotonic

surjection.

@ f1 is a monotonic injection, fs is a bijection, and fs is a monotonic
surjection.

© f1 is a bijection, f5 is a monotonic surjection, and f3 is a monotonic
injection.
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Proof: decomposition into injection and mono surjection

120000...
120000... NN
% 112200...
001122...

001122...
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Proof: injection — mono injection and bijection

011122..
011122 iﬁ@i[
el 711102...
211011 111

211011
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Componentwise reducibility

Definition

Say a is component-wise reducible to 3, written o <¢gpr 3, if we can
partition o and 3 as

o =uuy... and B =vivy...

such that Cl(u;) C Cl(v;) for all i and |u;|, |v;| are uniformly bounded by
a constant C. Call these presentations of o and 3 witnessing partitions
and intervals u; and v; partitioning intervals.

Theorem

| A\

a <gr B implies « <cr B.

A\
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If the QI map is monotonic, then the proof is easy. It is not in the

non-monotonic case.
We use a refined version of decomposition theorem and show a

transitivity-like lemma.
A function of the following form is called an atomic crossing map:
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Lemma

Any bijective quasi-isometry can be decomposed into finite number of
atomic crossing maps, each of which are also quasi-isometry.

| N\

Lemma

Suppose oo <g1 B via an atomic crossing map f : oo — 3 and 8 <cr 7.
Then o <¢cpr 7.

(o <gr B implies a <cpr (.) Decompose the QI map into « TN o EEN B,
where fj is bijective and f5 is monotonic. Then apply the lemma above
iteratively.
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@ Introduction: Quasi-isometry between colored metric spaces
o Structure of <g;

o Lemmas: small cross-over, decomposition, reduction

e Structure theorems: infinite chain, infinite antichain, density, etc.
@ Problems on <g;

e Biichi automata and large scale geometries
e Complexity of the quasi-isometry problem
e Asymptotic cones
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e From now on we assume ¥ = {0, 1}.
e For a=(Qro1mogm1™ . € {0,1}¥(n;,m; > 1), we call 0™ and 1"
the 0-blocks and 1-blocks, respectively.

0-blocks

01001100001111 ...

@ An infinite succession of o € X is also called a o-block.
0-block
111100000000. ..
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Global nature of 3¢,

We split the set Xy into four subsets:
e X(0) = {[a] | in « all the lengths of 0-blocks are universally bounded},
o X(1) = {[a] | in « the lengths of all 1-blocks are universally bounded},

e X(u) = {[a] | in a the lengths of both 0-blocks and 1-blocks are
unbounded},

e X(b) ={[o] | in a the lengths of both 0-blocks and 1-blocks are
universally bounded}.

The sets X(0), X(1), X(u), X(b) have the following properties:
@ The sets X(0) and X (1) are filters.
@ The set X(u) is an ideal.
© The set X(b) is the singleton {[(01)“]}.
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Structure theorems

X(b)
= (01)®

The set X'(b) is the singleton {[(01)“]},
and is the greatest element.

The sets X'(0) and X' (1) are filters.
The set X'(u) is an ideal. X (0) X (1)

[0] and [1¢] are minimal.

1@ o N 0@
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Structure theorems

e X(0),X(1) and X(u) contain chains
(an)nez of the type of integers, that is
Vn € Zlom <Qr o+
Proof:
a1 = 0101001001 ...0%"10%"1. .. X(0) X(1)

ap = 01001...0%"1...
a_q = 0100001 ... 04"1. . 1
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Structure theorems

e X(0),X(1) and X'(u) have countable
antichains.

Proof:

B, = 0102 12" 03" 13" ...0"" 1" ...
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Structure theorems

® X, possesses infinitely many minimal
elements. —X(b)

Proof. For any unbounded nondecreasing se-
quence {ap}ncw, the following sequence is
minimal:

q = 090101002193 (92K [92k+1 X(0) X(1)

Problem X (u)

Are there uncountably many minimal 4 N
elements? J
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Density

Theorem (Density Theorem)

Let o, 3 € X% be given. Assume o <qr [3, and every letter in o or 3
occurs in both « and 3 infinitely many often. Then there exists v € 3
such that a <gr v <qgr B-

Morever, there are infinitely many ~'s that satisfy this inequality, and not
quasi-isometric each other.
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Least upper bound

Some naive definitions turn out to be not well-defined (i.e. there are
a ~qr o and B ~qr B such that [a A ] # [/ A B']).

o aNfB=a(0)B(0)a(1)5(1)...
e aANf=aXOR g

Theorem (Stephan+, personal communication)

There are strings o and 3 for which no least upper bound exist.
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@ Introduction: Quasi-isometry between colored metric spaces
@ Structure of <gy

o Lemmas: small cross-over, decomposition, reduction
e Structure theorems: infinite chain, infinite antichain, density, etc.

@ Problems on <g;

o Biichi automata and large scale geometries
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Definition

An atlas is a set of quasi-isometry types. In particular, the atlas defined by
the language L is the set [L] = {[a] | « € L}, where [a] is the
quasi-isometry type of «.

Definition

| \

A Biichi automaton M is a quadruple (S, 1, A, F), where S is a finite set
of states, 1 € S is the initial state, A C S x X x S is the transition table,
and F C S is the set of accepting states.
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Geometries of strings accepted by M

Theorem

Any atlas [L] defined by a Biichi recognisable
language L is a union from the following list of

X (b)
atlases: '
o [{(01)*}], [{1*}, [{0*}], [{01*}], X(0) l x(1)

[{104}],

o =%, \ {[0], [14], [10+], [014]},
o X(0)\ {[14], [014]},

o X(1)\ {[0], [10“]}.
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Geometries of strings accepted by M

Theorem

Any atlas [L] defined by a Biichi recognisable
language L is a union from the following list of
atlases:

o [{(01)“}], [{1*}], [{o~}], [{01+}],
[{10*}],

o X, \ {[0¥], [1¢], [10+], [01]},

o X(0)\{[1+], [01*]},

o X(1)\ {[0°], [10+]}.
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Geometries of strings accepted by M

Theorem

Any atlas [L] defined by a Biichi recognisable

language L is a union from the following list of

atlases:

o [LOD), [(1°)), (o)), (o} '
[{104}],

o %3, \ {04, [14],[10+], [0141]},

A(0) \ {[1#], [01+]},
A (1) \ {[0*], [10“]}.
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Geometries of strings accepted by M

Theorem

Any atlas [L] defined by a Biichi recognisable

language L is a union from the following list of
atlases:
o [{(O)“)], [(14)], [{0}], [{01+}]
o 55, \ {041, 1], [10°], [01]},

A(0) \ {[1+], [014]},
A (1) \ {[0], [10“]}.
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Call a loop of a Biichi automaton a 0-loop if only 0 is read through the
loop. Define I-loops and 01-loops in a similar way.
Then all Biichi automata are categorized by the following features:

e if it has a 0-loop, 1-loop, and 01-loop or not; and

@ how these loops are connected.

For example,

@ if it has 0-loop and 1-loop, the initial state is in 0-loop and can move
from one loop to another, then the automaton accepts ¥¢); \ [1“].

@ If it has 0-loop and 01-loop, the initial state is in 0-loop and can move
from one loop to another, then the automaton accepts X (1).
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Decidability result

There exists an algorithm that, given Biichi automata A and B, decides if
the atlases [L(A)] and [L(B)] coincide. Furthermore, the algorithm runs in
linear time on the size of the input automata.

In contrast, the problem of deciding whether two given Biichi automata
represent the same language is PSPACE-complete.
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Problem and our result

The quasi-isometry problem consists of determining if given two strings «
and 3 are quasi-isometric. Formally, the quasi-isometry problem (over the
alphabet ¥) is identified as the set:

QIP ={(a,p) | @, € ¥ & [o] = [B]}.

Theorem
The following statements are true:
@ Given quasi-isometric strings o and (3, there exists a quasi-isometry
between o and 3 computable in the halting set relative to o and f3.
@ The quasi-isometry problem between computable strings, that is the
following set QIP = {(«,8) | a, B € ¥, [a] = [B], @ and 3 are
computable} is a complete ¥9-set.

| \,

Problem
Given quasi-isometric strings « and 3, does there exist a computable
quasi-isometry between them? 27 /44
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Basic setting

@ Let o € X% be a coloured metric space.

@ We call s:w — w a scaling factor if it is strictly monotonic and
s(0) = 1.

o Let d,(i,7) =i — j|/s(n).
We define the following sequence of metric spaces:

X(]’a = (Oé,do), Xl,a = (Oé,dl), e aXn,a = (a,dn), e

We want to define a “limit" of this sequence in a formal way to treat the
large scale geometry of . We adopt the notion of asymptotic cone to do
that.
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The set B(F, s) and an equiv. rel. on it

Let F C P(w) be a non-principal ultrafilter.

Let a = (an)n>0 be a sequence, where a,, € X, 4.

a is F-bounded if {n | d,(0,a,) < L} € F for some L.

Let B(F,s) be the set of all bounded sequences a = (ay)n>0.
a, b € B(F,s) is said to be F-equivalent (a ~x c) if

Ve > 0[{n | dp(an,by) < €} € F|.
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Asymptotic cone

Definition

For given sequence «, scaling function s and ultrafilter F, the asymptotic
cone of «, written Cone(a, F, s), with respect to the scaling function
s(n) and the ultra-filter F is the factor set

B(F,s)/ ~r

equipped with the following metric D and colour C':

© D(a,b) = r if and only if for every € the set
{n|r—e<dy(an,by) <r+¢€} belong to F.

@ C(a) = o if and only if the set {n | a,, has colour o} belongs to F.
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The following theorems are coloured variant of a known results in
geometric group theory, which says the set of all asymptotic cones modulo
quasi-isometry is "simpler" than 01

Theorem

If strings o and (3 are quasi-isometric then the following holds for the
asymptotic cones Cone(a, F,s) and Cone(f3, F,s).

@ They are bi-Lipschitz equivalent; i.e. they are quasi-isometric with the
additive constant B = 0.

@ The bi-Lipscitz map above can be taken as a order preserving map.

Theorem

There are two non-quasi-isometric strings «, 3 € {0,1}*, a scale factor
s(n), and filter F such that the cones Cone(a, F,s) and Cone(B, F,s)
coincide.

v
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If o is Martin-L6f random, then for all computable scaling factors s and
ultra-filters F, the asymptotic cone Cone(a, F,s) coincides with the space
(R>0;d,C'), where all reals have all colours from alphabet ¥.
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@ Open problems

o Cardinality of the set of minimal elements
o Existence of computable QI-map for computable sequences
o There are some more...

@ Degree theory for <g; (ongoing w/ F. Stephan, S. Jain)
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