
Ranking and Repulsing 
Supermartingales for 

Reachability in Probabilistic 
Programs

Toru Takisaka1, Yuichiro Oyabu2,3, Natsuki Urabe1, Ichiro Hasuo2,3

National Institute of Informatics, Japan1

The Graduate University for Advanced Studies (SOKENDAI), Japan2

University of Tokyo, Japan3



Formalize the extension procedure from 
metamathematical viewpoint

Discrete → 
Hybrid

Qualitative →
Quantitative

Formal 
method for 

software

Specification, 
verification,
Synthesis…

Formal 
method for 

CPS

collaborate

Machine learning
Optimization

Control theory

Category 
theory, 
logic, …

• Software support 
for CPS 
development

• Cost cut in quality 
assurance

• Theoretical basis for 
future integrated 
development

• …https://group-mmm.org/eratommsd/



Formalize the extension procedure from 
metamathematical viewpoint

Discrete → 
Hybrid

Qualitative →
Quantitative

Formal 
method for 

software

Specification, 
verification,
Synthesis…

Formal 
method for 

CPS

collaborate

Machine learning
Optimization

Control theory

Category 
theory, 
logic, …

• Software support 
for CPS 
development

• Cost cut in quality 
assurance

• Theoretical basis for 
future integrated 
development

• …https://group-mmm.org/eratommsd/



Outline

• Introduction / preliminaries
• Our topic: supermartingale for reachability analysis
• What can supermartingale do?
• What is supermartingale? / Why does it work?
• Which property of SM techniques are we interested? -

Soundness / completeness

• Our contribution
• Theoretical part: characterization of SM techniques via 

KT theorem
• Implementation and experiments



Input: probabilistic program

Problem formulation



Input: probabilistic program

Nondet. / Prob.
branching

Nondet. / Prob.
assignment

Problem formulation



Input: probabilistic program

Nondet. / Prob.
branching

Nondet. / Prob.
assignment

What is the probability that 
the program terminates?

(under angelic/demonic scheduler)

Problem

We admit continuous variables

⇒ Generally one can’t compute
probability efficiently

Problem formulation



Problem formulation

Input: probabilistic program

⇒ Reachability analysis by supermartingale

Nondet. / Prob.
branching

Nondet. / Prob.
assignment

What is the probability that 
the program terminates?

(under angelic/demonic scheduler)

Problem

We admit continuous variables

⇒ Generally one can’t compute
probability efficiently



Outline

• Introduction / preliminaries
• Our topic: supermartingale for reachability analysis
• What can supermartingale do?
• What is supermartingale? / Why does it work?
• Which property of SM techniques are we interested? -

Soundness / completeness

• Our contribution
• Theoretical part: characterization of SM techniques via 

KT theorem
• Implementation and experiments



(Agrawal+, POPL’18)

Probabilistic modification of 
real-world benchmarks

(in Alias+, SAS’10)

A.s. termination is
certified in 20/28 examples

Ranking supermartingale for a.s.
termination (Chakarov-Sankaranarayanan, CAV’13 etc.)



(Steinhardt-Tedrake, IJRR’12)

>99% safety is guaranteed
(Pr(failure) <1%)

The log-base-10 of the
failure probability 

System: pendulum + noise

𝜃

Failure  ⇔

𝜃 > 𝜋/6 at 
time 𝑡 ≤ 1hour

Repulsing supermartingale for
lower bound of safety probability 
(Steinhardt-Tedrake, IJRR’12; Chatterjee+, POPL’17 etc.)
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𝑙2𝑙1

𝑙3
∗

∗

𝑥 ≔ Bernoulli(0.9)

𝑙4

f = 1 f = 𝑥

f = 𝑥 − 1

f = −3

𝔼
the value of 𝑓

at the next state
= 0.9

∀𝑙 𝑙2 → 𝑙 … (angelic)
∃𝑙 𝑙2 → 𝑙 …(demonic)

Supermartingale = a function over states 

that is “non-increasing” through transitions
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Barrier certificate

𝑓 ≥ 0

Safe region

Unsafe region
𝑓 ≥ 0

The system does not enter the unsafe region

𝑥init

𝑓 < 0
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𝑓 = 1

Safe region

Unsafe region
𝑓 = 1

Pr(the system enters the unsafe region) ≤ 𝛿

𝑥init
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valued
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(a.k.a. nonneg. repulsing supermartingale)
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Two objective functions

• Given: a control flow graph, and a subset 𝐶 of its states

• For   𝑠 ∈ 𝐿 × ℝ𝑉 = (state space),

𝔼steps ∶ 𝑠 ↦ 𝔼
the number of steps from 𝑠

to the region 𝐶

ℙreach ∶ 𝑠 ↦ ℙ
the system eventually visits

the region 𝐶 from 𝑠



Two objective functions

…under
angelic/demonic

scheduler

𝔼steps ∶ 𝑠 ↦ 𝔼
the number of steps from 𝑠

to the region 𝐶

ℙreach ∶ 𝑠 ↦ ℙ
the system eventually visits

the region 𝐶 from 𝑠

• Given: a control flow graph, and a subset 𝐶 of its states

• For   𝑠 ∈ 𝐿 × ℝ𝑉 = (state space),



𝑓 is a RankSM ⇒ 𝔼steps ≤ 𝑓Soundness:

Completeness: 𝔼steps is a RankSM

Ranking supermartingale

(𝑓 𝑠 < ∞ ⇒ ℙreach(𝑠) = 1)

Soundness:

Completeness:

Nonnegative repulsing supermartingale

𝑓 is a RepSM ⇒ ℙreach ≤ 𝑓

ℙreach is a RepSM

Soundness/completeness



Approximation method Certificate for Soundness Completeness

Additive ranking
Supermartingale
(Chakarov-Sankaranarayanan, CAV’13 etc.)

Yes (with nondet. /  
continuous variable)

Yes (with nondet. / 
discrete variable)

Nonnegative repulsing
supermartingale
(Steinhardt+, IJRR’12 etc.)

Yes (NO nondet. /  
continuous variable)*

-

𝛾-scaled  submartingale
(Urabe+, LICS‘17)

Yes (NO nondet. /  
continuous variable)

-

휀-decreasing repulsing
supermartingale
(Chatterjee+, POPL’17)

Yes (with nondet. /  
continuous var. / 
linearity assumpt.)

-

𝔼steps < ∞

ℙreach ≥ ?

ℙreach ≤ ?

ℙreach ≤ ?

(ℙreach= 1)

State of the Art

*In [Steinhardt+] continuous-time dynamics is also considered
Soundness for c-supermartingale is shown, which is a relaxation of supermartingale
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*In [Steinhardt+] continuous-time dynamics is also considered
Soundness for c-supermartingale is shown, which is a relaxation of supermartingale
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ℙreach = 𝜇Ψ

The lattice (ℱ, ⊑)

ℱ … the set of all (measurable) functions 
𝑓: 𝐿 × ℝ𝑉 → 0,1

⊑ …     𝑓 ⊑ 𝑔 ⇔ ∀𝑠. 𝑓 𝑠 ≤ 𝑔(𝑠)

Ψ𝑓⊑𝑓

𝜇Ψ⊑𝑓

Soundness

𝑓 is a RepSM
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Completeness
⇔

Knaster-Tarski theorem

⇔

Our theorem

Soundness/completeness of NNRepSM



Our contributions

Soundness/completeness of martingale techniques for

PPs with continuous variables and nondeterminism

Characterization of martingale techniques via

Knaster-Tarski fixed point theorem

Implementation and experiments



Synthesis algorithm

• Input: affine/polynomial PP

• Translate PP to

• For the set 𝐹 of all affine/polynomial functions over 
states, solve:

• Output: 𝑓(𝑥𝑖𝑛𝑖𝑡)

control flow graph

initial state 𝑥𝑖𝑛𝑖𝑡

set of terminal states 

Overapprox. “ sup ℙreach ”
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Synthesis algorithm

• Input: affine/polynomial PP

• Translate PP to

• For the set 𝐹 of all affine functions over states, solve:

• Output: 𝑓(𝑥𝑖𝑛𝑖𝑡)

control flow graph

initial state 𝑥𝑖𝑛𝑖𝑡

set of terminal states 

Underapprox. “ inf ℙreach ”

Can be reduced to
LP problem
(e.g. Chakarov-Sankaranarayanan, 
CAV’13)



𝛾-scaled submartingale

Nonnegative repulsing submartingale

• Input: adversarial random walk (similar to the reading ex.)
• Nontrivial bounds found in 50% cases

Experiments



Observed comparative advantage of 
nonnegative RepSM over 휀-decreasing RepSM

Experiments



Approximation method Certificate for Soundness Completeness

Additive ranking
Supermartingale
(Chakarov-Sankaranarayanan, CAV’13 etc.)

Yes (with nondet. /  
continuous variable)

Yes (with nondet. / 
discrete variable)

Nonnegative repulsing
supermartingale
(Steinhardt+, IJRR’12 etc.)

Yes (NO nondet. /  
continuous variable)

-

𝛾-scaled  submartingale
(Urabe+, LICS‘17)

Yes (NO nondet. /  
continuous variable)

-

휀-decreasing repulsing
supermartingale
(Chatterjee+, POPL’17)

Yes (with nondet. /  
continuous var. / 
linearity assumpt.)

-

Yes (with nondet. /  
continuous variable)*

Yes 
(with nondet. /  

cont. var.)

No

Yes 
(with nondet. /  

cont. var.)

𝔼steps < ∞

ℙreach ≥ ?

ℙreach ≤ ?

ℙreach ≤ ?

(ℙreach= 1)

*In [Steinhardt+] continuous-time dynamics is also considered
Soundness for c-supermartingale is shown, which is a relaxation of supermartingale

Thank you for your attention ☺


