Ranking and Repulsing Supermartingales for Reachability in Probabilistic Programs

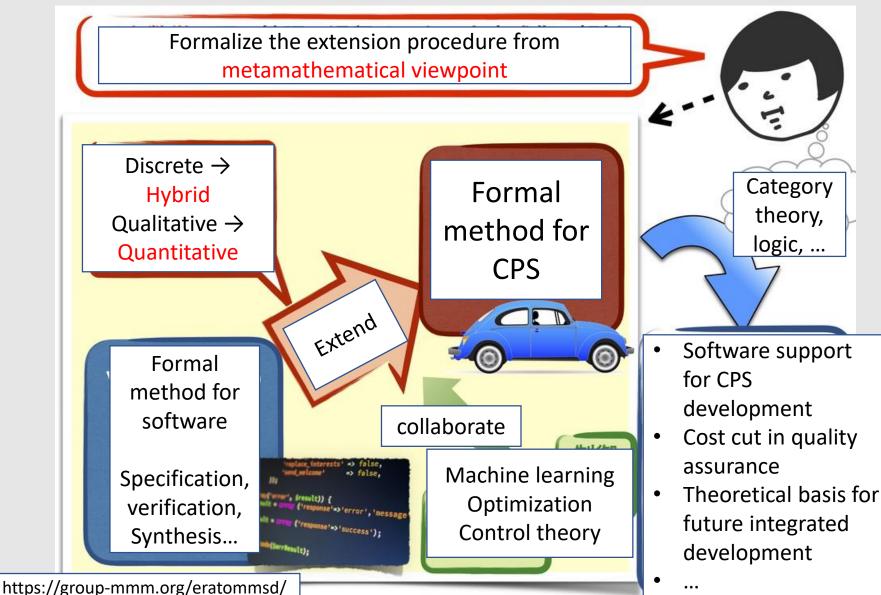
<u>Toru Takisaka¹</u>, Yuichiro Oyabu^{2,3}, Natsuki Urabe¹, Ichiro Hasuo^{2,3}

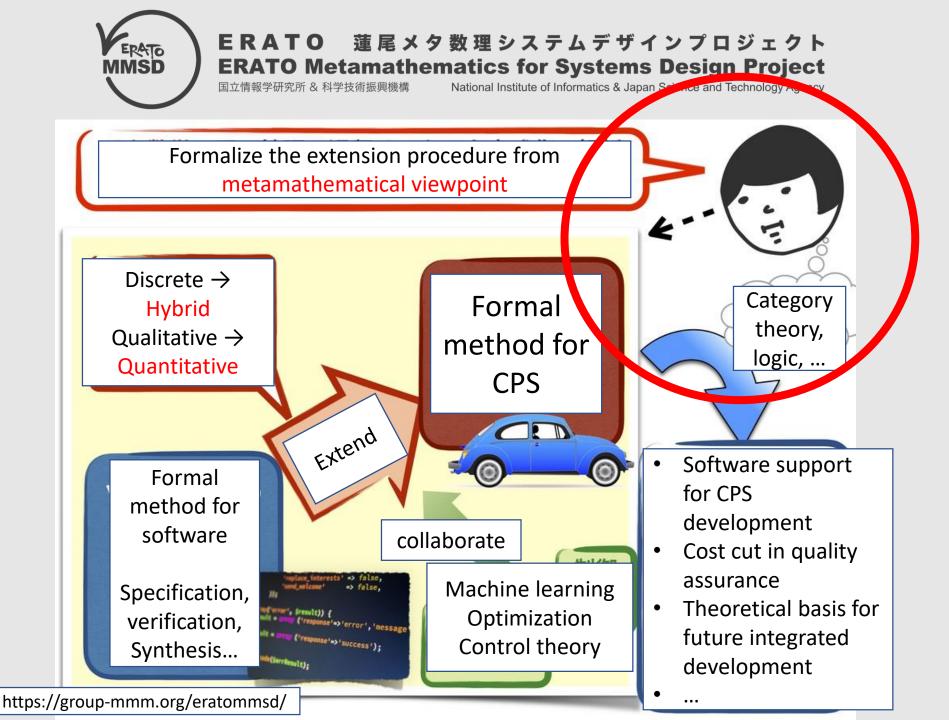
National Institute of Informatics, Japan¹ The Graduate University for Advanced Studies (SOKENDAI), Japan² University of Tokyo, Japan³

ERATO 蓮尾メタ数理システムデザインプロジェクト ERATO Metamathematics for Systems Design Project

国立情報学研究所 & 科学技術振興機構

National Institute of Informatics & Japan Science and Technology Agency

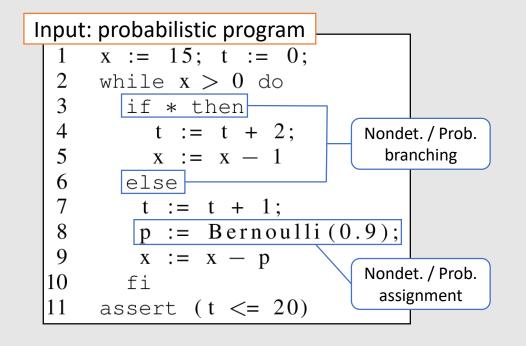


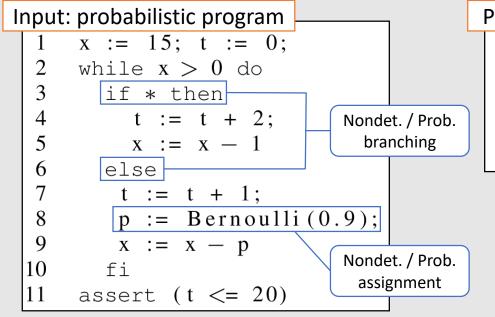


Outline

- Introduction / preliminaries
 - Our topic: supermartingale for reachability analysis
 - What can supermartingale do?
 - What is supermartingale? / Why does it work?
 - Which property of SM techniques are we interested? -Soundness / completeness
- Our contribution
 - Theoretical part: characterization of SM techniques via KT theorem
 - Implementation and experiments

```
Input: probabilistic program
     x := 15; t := 0;
 1
 2
     while x > 0 do
 3
       if * then
 4
      t := t + 2;
 5
      x := x - 1
 6
    else
 7
     t := t + 1;
     p := Bernoulli(0.9);
 8
 9
     x := x - p
 10
       fi
     assert (t <= 20)
 11
```





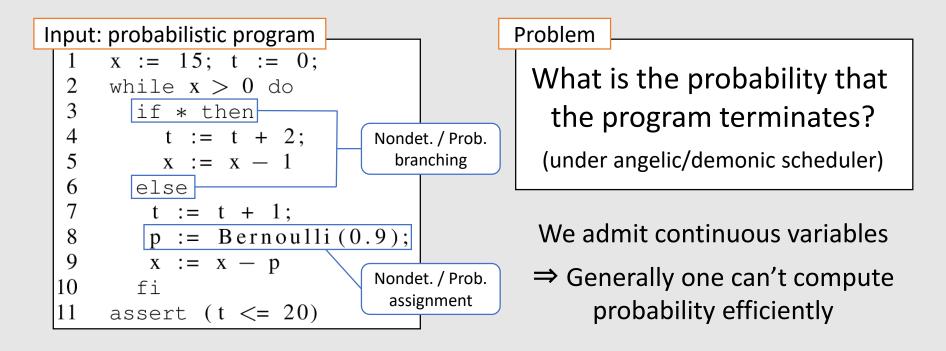
Problem

What is the probability that the program terminates?

(under angelic/demonic scheduler)

We admit continuous variables

⇒ Generally one can't compute probability efficiently



⇒ Reachability analysis by supermartingale

Outline

- Introduction / preliminaries
 - Our topic: supermartingale for reachability analysis
 - What can supermartingale do?
 - What is supermartingale? / Why does it work?
 - Which property of SM techniques are we interested? -Soundness / completeness
- Our contribution
 - Theoretical part: characterization of SM techniques via KT theorem
 - Implementation and experiments

Ranking supermartingale for a.s. termination (Chakarov-Sankaranarayanan, CAV'13 etc.)

Probabilistic modification of real-world benchmarks (in Alias+, SAS'10)

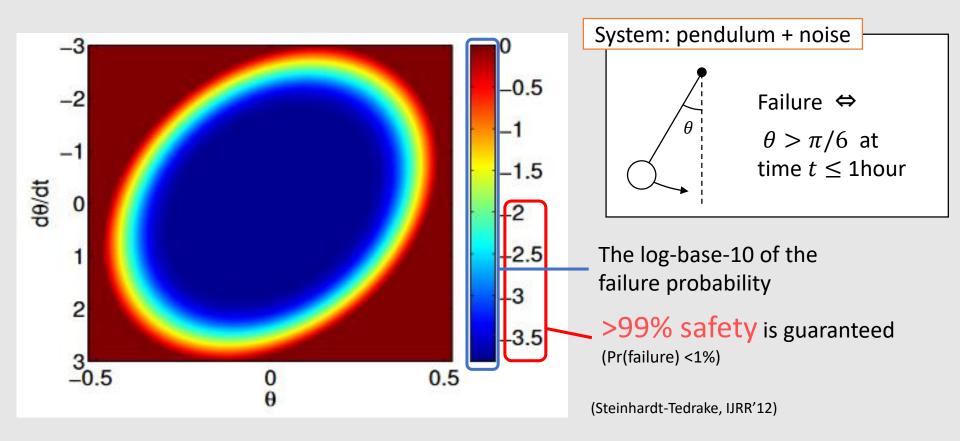
A.s. termination is certified in 20/28 examples

(Agrawal+, POPL'

	Benchmark	Time (s)	Solution	Dimension	Prob. loops	Prob. Assignments
-	alain	0.11	yes	2	yes	yes
	catmouse	0.08	yes	2	yes	yes
	counterex1a	0.1	no		no	no
	counterex1c	0.11	yes	3	yes	yes
	easy1	0.09	yes	1	yes	yes
	exmini	0.09	yes	2	yes	yes
	insertsort	0.1	yes	3	yes	yes
	ndecr	0.09	yes	2	yes	yes
	perfect	0.11	yes	3	yes	yes
-	perfect2	0.1	yes	3	yes	no
	-	0.11	no		yes	yes
	real2	0.09	no		no	no
	realbubble	0.22	yes	3	yes	yes
	realselect	0.11	yes	3	yes	yes
	realshellsort	0.09	no		yes	no
	serpent	0.1	yes	1	yes	yes
	sipmabubble	0.1	yes	3	yes	yes
	speedDis2	0.09	no		no	no
	speedNestedMultiple	0.1	yes	3	yes	yes
	speedpldi2	0.09	yes	2	yes	yes
	speedpldi4	0.09	yes	3	yes	yes
	speedSimpleMultipleDep	0.09	no		no	no
	speedSingleSingle2	0.12	yes	2	yes	no
ł		0.1	no		yes	yes
	unperfect	0.1	yes	2	yes	no
		0.16	no		yes	yes
	wcet1	0.11	yes	2	yes	yes
'18)	while2	0.1	yes	3	yes	yes

Repulsing supermartingale for lower bound of safety probability

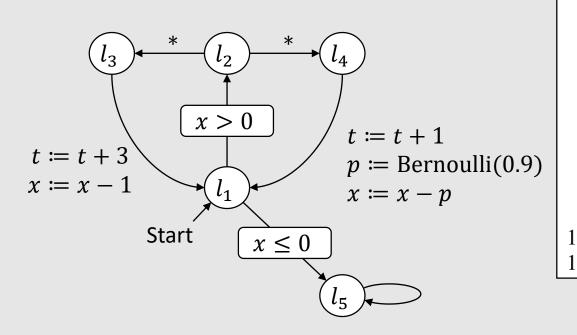
(Steinhardt-Tedrake, IJRR'12; Chatterjee+, POPL'17 etc.)



Outline

- Introduction / preliminaries
 - Our topic: supermartingale for reachability analysis
 - What can supermartingale do?
 - What is supermartingale? / Why does it work?
 - Which property of SM techniques are we interested? -Soundness / completeness
- Our contribution
 - Theoretical part: characterization of SM techniques via KT theorem
 - Implementation and experiments

 \mathbb{R}^{V}

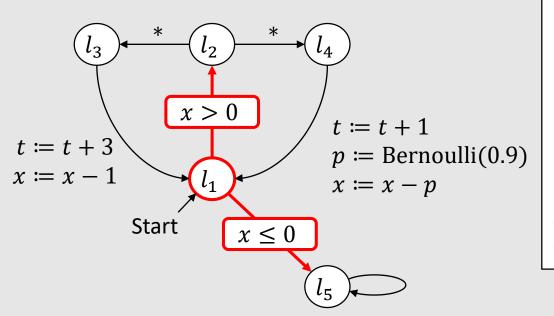


1
$$x := 15; t := 0;$$

2 while $x > 0$ do
3 if * then
4 $t := t + 2;$
5 $x := x - 1$
6 else
7 $t := t + 1;$
8 $p := Bernoulli(0.9);$
9 $x := x - p$
1 assert ($t \le 20$)

- A state is a pair (program location, memory state)
- Nondet. / prob. branching finite

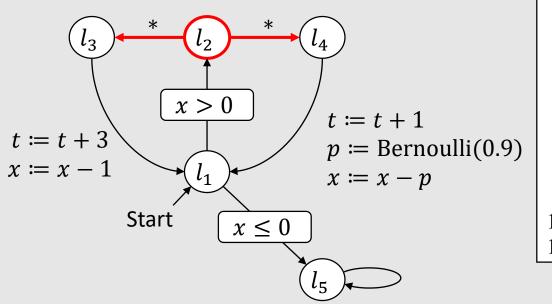
 \mathbb{R}^{V}



1	x := 15; t := 0;
2	while $x > 0$ do
3	if * then
4	t := t + 2;
5	x := x - 1
6	else
7	t := t + 1;
8	p := Bernoulli (0.9);
9	x := x - p
10	fi
11	assert (t <= 20)

- A state is a pair (program location, memory state)
- Nondet. / prob. branching finite

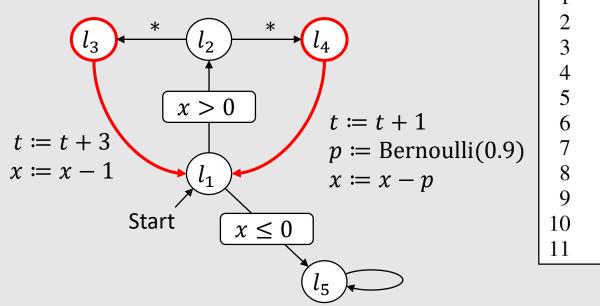
 \mathbb{R}^{V}



1	x := 15; t := 0;
2	while $\mathbf{x} > 0$ do
3	if * then
4	t := t + 2;
5	x := x - 1
6	else
7	t := t + 1;
8	p := Bernoulli (0.9);
9	$\mathbf{x} := \mathbf{x} - \mathbf{p}$
10	fi
11	assert (t <= 20)

- A state is a pair (program location, memory state)
- Nondet. / prob. branching finite

 \mathbb{R}^{V}

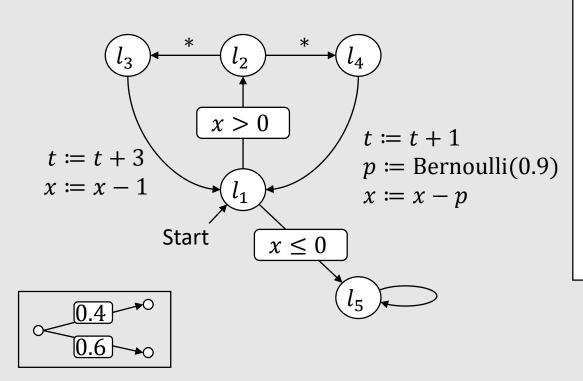


1
$$x := 15; t := 0;$$

2 while $x > 0$ do
3 if * then
4 $t := t + 2;$
5 $x := x - 1$
6 else
7 $t := t + 1;$
8 $p := Bernoulli(0.9);$
9 $x := x - p$
10 fi
11 assert ($t \le 20$)

- A state is a pair (program location, memory state)
- Nondet. / prob. branching finite

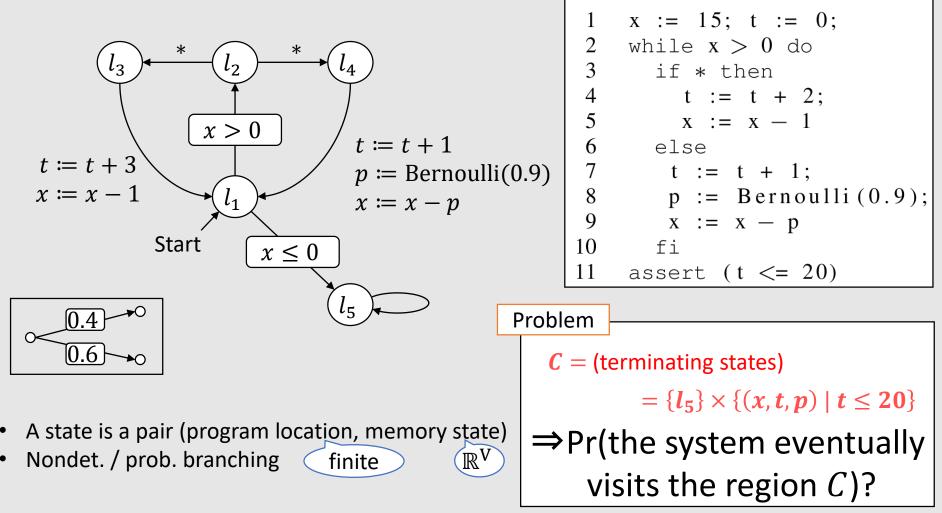
 \mathbb{R}^{V}

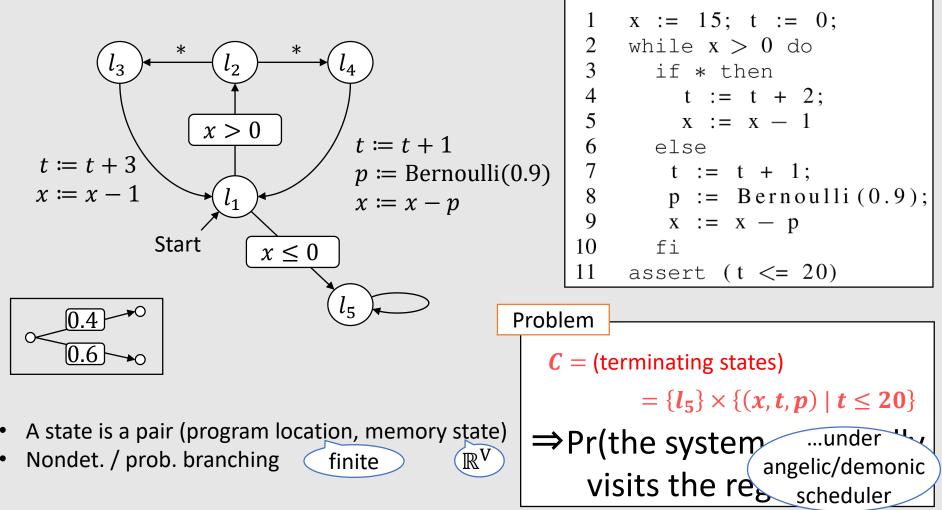


1
$$x := 15; t := 0;$$

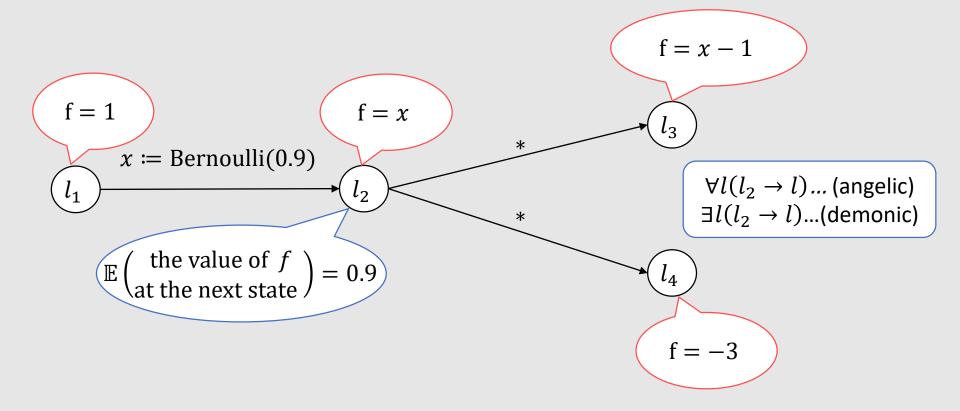
2 while $x > 0$ do
3 if * then
4 $t := t + 2;$
5 $x := x - 1$
6 else
7 $t := t + 1;$
8 $p := Bernoulli(0.9);$
9 $x := x - p$
10 fi
11 assert (t <= 20)

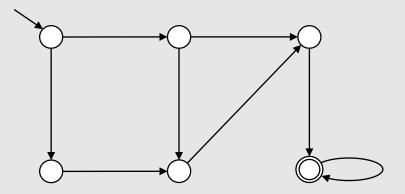
- A state is a pair (program location, memory state)
- Nondet. / prob. branching finite

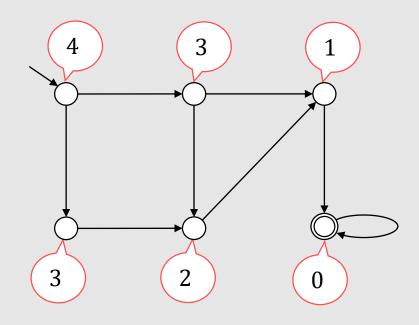


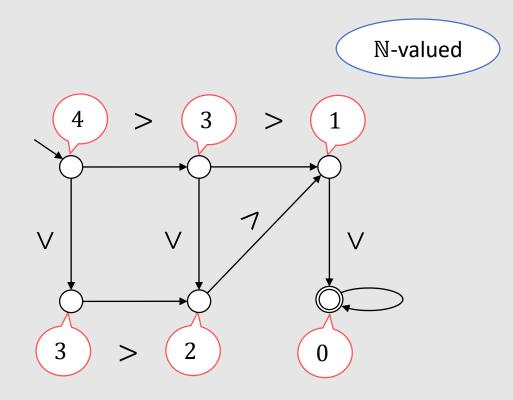


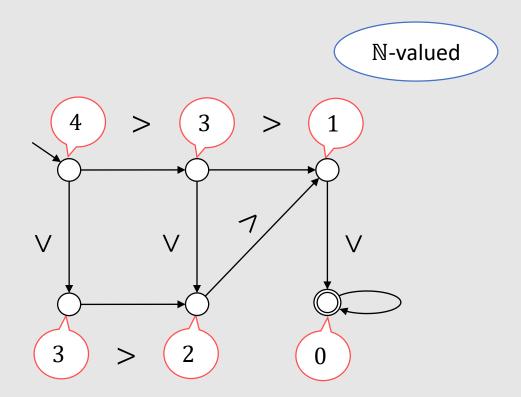
Supermartingale = a function over states that is "non-increasing" through transitions



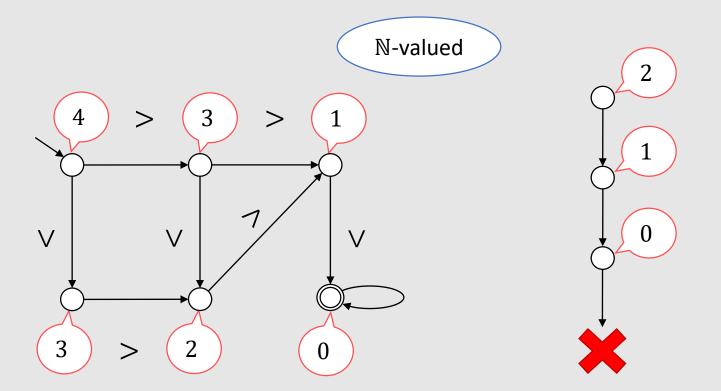




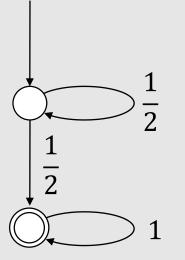


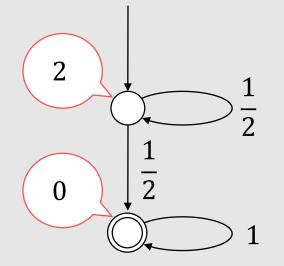


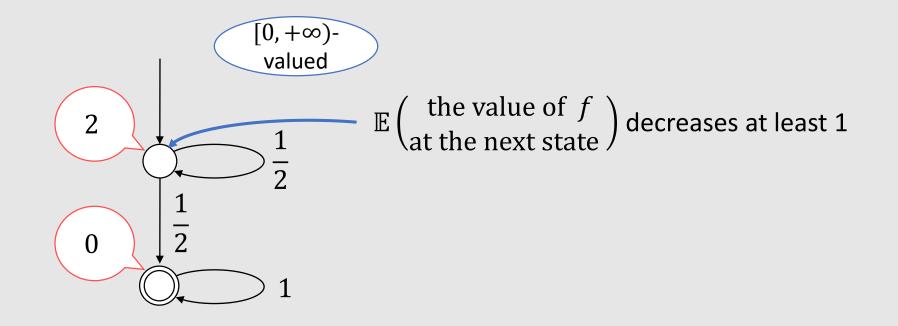
The system eventually visits (under any nondeterministic choice)

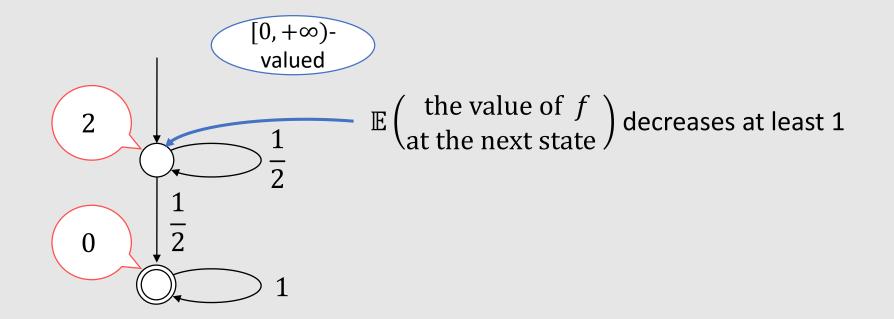


The system eventually visits (under any nondeterministic choice)

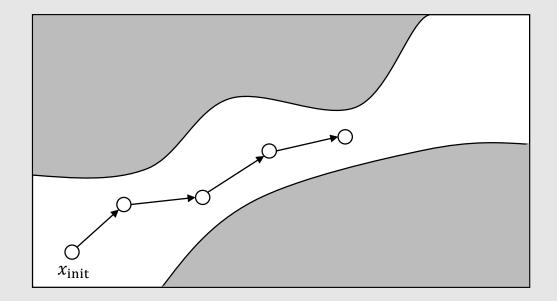


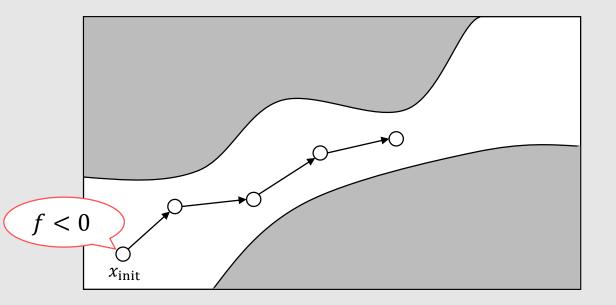


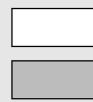


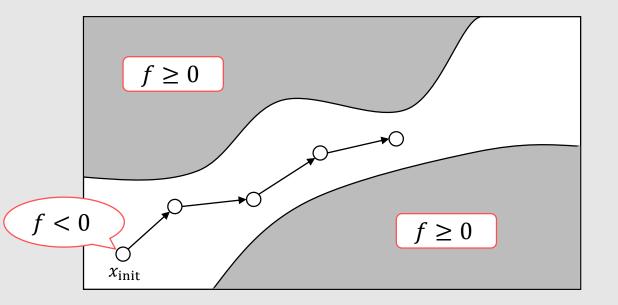


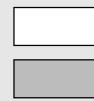
The system eventually visits O almost surely

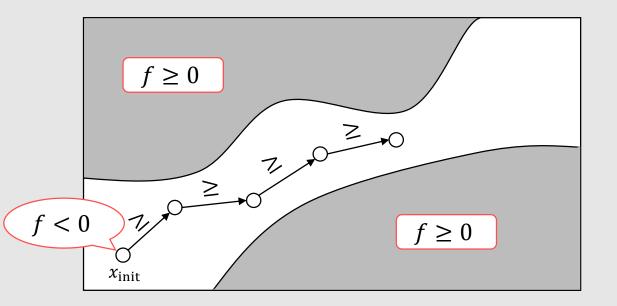


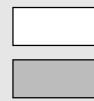


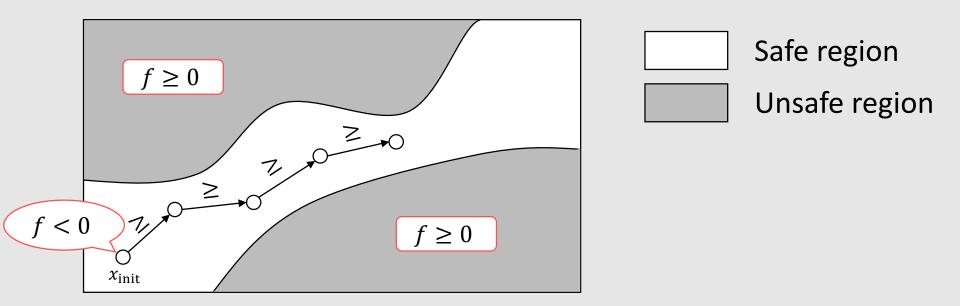






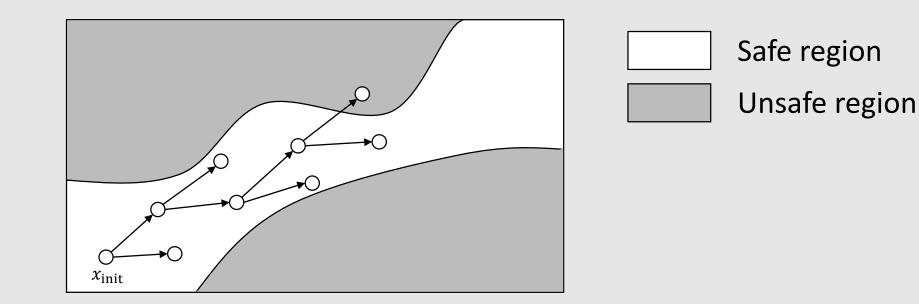




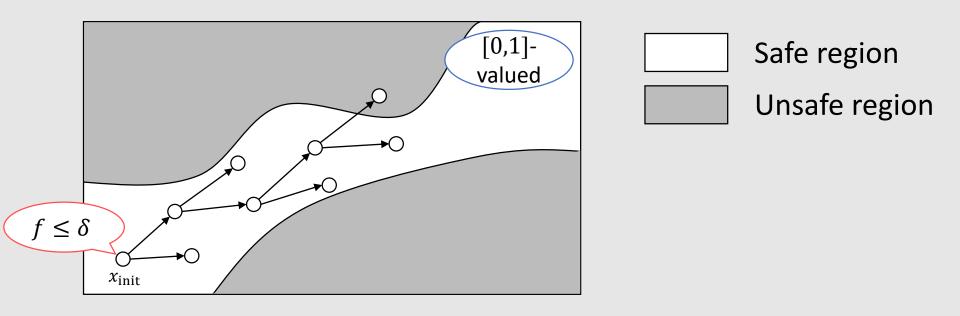


The system does not enter the unsafe region

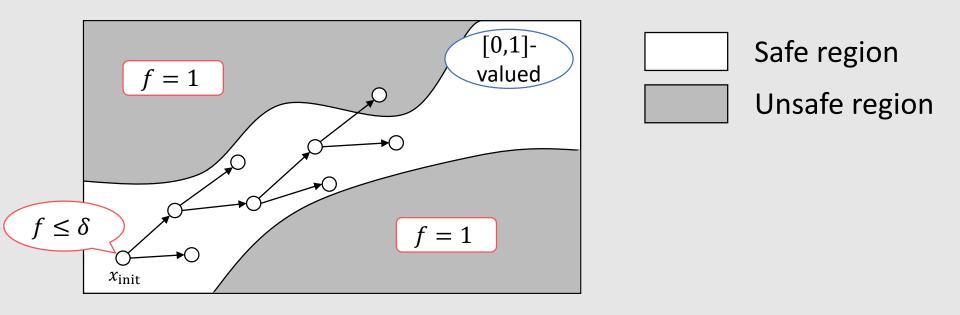
Probabilistic barrier certificate (a.k.a. nonneg. repulsing supermartingale)



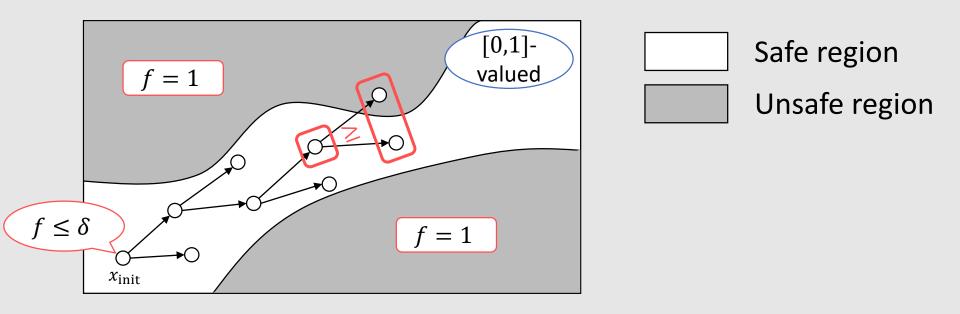
Probabilistic barrier certificate (a.k.a. nonneg. repulsing supermartingale)



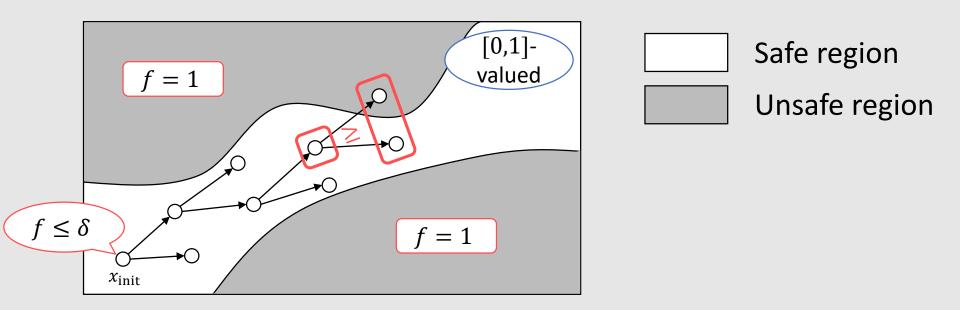
Probabilistic barrier certificate (a.k.a. nonneg. repulsing supermartingale)



Probabilistic barrier certificate (a.k.a. nonneg. repulsing supermartingale)



Probabilistic barrier certificate (a.k.a. nonneg. repulsing supermartingale)



Pr(the system enters the unsafe region) $\leq \delta$

Outline

- Introduction / preliminaries
 - Our topic: supermartingale for reachability analysis
 - What can supermartingale do?
 - What is supermartingale? / Why does it work?
 - Which property of SM techniques are we interested? -Soundness / completeness
- Our contribution
 - Theoretical part: characterization of SM techniques via KT theorem
 - Implementation and experiments

Two objective functions

- Given: a control flow graph, and a subset C of its states
- For $s \in L \times \mathbb{R}^V = (\text{state space})$,

 $\mathbb{E}^{\text{steps}} : s \mapsto \mathbb{E} \begin{pmatrix} \text{the number of steps from } s \\ \text{to the region } C \end{pmatrix}$ $\mathbb{P}^{\text{reach}} : s \mapsto \mathbb{P} \begin{pmatrix} \text{the system eventually visits} \\ \text{the region } C \text{ from } s \end{pmatrix}$

Two objective functions

- Given: a control flow graph, and a subset C of its states
- For $s \in L \times \mathbb{R}^V = (\text{state space})$,

 $\mathbb{E}^{\text{steps}} : s \mapsto \mathbb{E} \begin{pmatrix} \text{the number of steps from } s \\ \text{to the region } C \end{pmatrix}$ $\mathbb{P}^{\text{reach}} : s \mapsto \mathbb{P} \begin{pmatrix} \text{the system eventually visits} \\ \text{the region } C \text{ from } s \end{pmatrix}$ $\dots \text{under angelic/demonic}$

scheduler

Soundness/completeness

Ranking supermartingale

Soundness: f is a RankSM $\Rightarrow \mathbb{E}^{\text{steps}} \leq f$ $(f(s) < \infty \Rightarrow \mathbb{P}^{\text{reach}}(s) = 1)$ Completeness: $\mathbb{E}^{\text{steps}}$ is a RankSM

Nonnegative repulsing supermartingaleSoundness:f is a RepSMCompleteness: \mathbb{P}^{reach} is a RepSM

State of the Art

Approximation method	Certificate for	Soundness	Completeness
Additive ranking Supermartingale (Chakarov-Sankaranarayanan, CAV'13 etc.)	$\mathbb{E}^{\text{steps}} < \infty$ $(\mathbb{P}^{\text{reach}} = 1)$	Yes (with nondet. / continuous variable)	Yes (with nondet. / discrete variable)
Nonnegative repulsing supermartingale (Steinhardt+, IJRR'12 etc.)	$\mathbb{P}^{\text{reach}} \leq ?$	Yes (NO nondet. / continuous variable) [*]	-
γ-scaled submartingale (Urabe+, LICS'17)	$\mathbb{P}^{\text{reach}} \geq ?$	Yes (NO nondet. / continuous variable)	-
<i>ɛ</i> -decreasing repulsing supermartingale (Chatterjee+, POPL'17)	$\mathbb{P}^{\text{reach}} \leq ?$	Yes (with nondet. / continuous var. / linearity assumpt.)	-

Our contributions

Soundness/completeness of martingale techniques for PPs with continuous variables and nondeterminism

> Characterization of martingale techniques via Knaster-Tarski fixed point theorem

Implementation and experiments

Our contributions

Soundness/completeness of martingale techniques for PPs with continuous variables and nondeterminism

> Characterization of martingale techniques via Knaster-Tarski fixed point theorem

Implementation and experiments

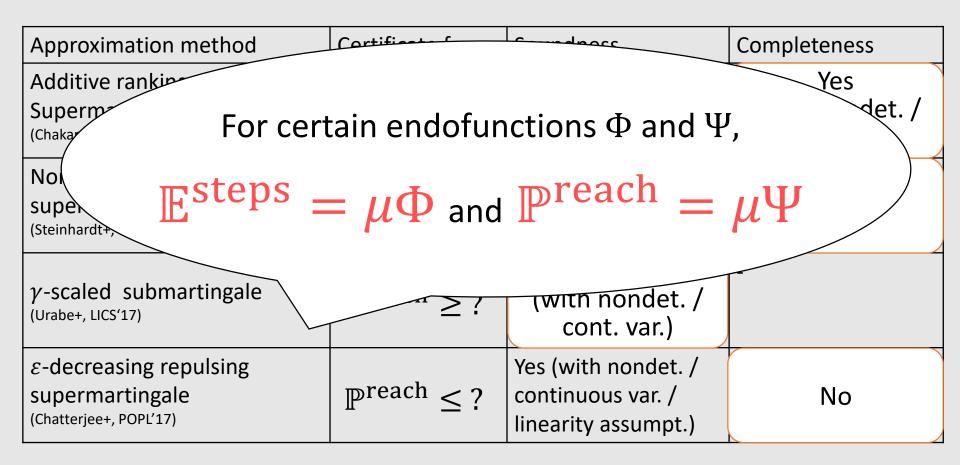
Soundness/completeness of martingale techniques

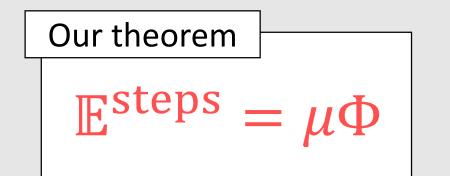
Approximation method	Certificate for	Soundness	Completeness
Additive ranking Supermartingale (Chakarov-Sankaranarayanan, CAV'13 etc.)	$\mathbb{E}^{\text{steps}} < \infty$ $(\mathbb{P}^{\text{reach}} = 1)$	Yes (with nondet. / continuous variable)	Yes (with nondet. / discrete variable)
Nonnegative repulsing supermartingale (Steinhardt+, IJRR'12 etc.)	$\mathbb{P}^{\text{reach}} \leq ?$	Yes (NO nondet. / continuous variable) [*]	-
γ -scaled submartingale (Urabe+, LICS'17)	$\mathbb{P}^{\text{reach}} \geq ?$	Yes (NO nondet. / continuous variable)	-
ε-decreasing repulsing supermartingale (Chatterjee+, POPL'17)	$\mathbb{P}^{\text{reach}} \leq ?$	Yes (with nondet. / continuous var. / linearity assumpt.)	-

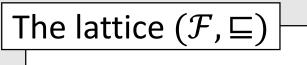
Soundness/completeness of martingale techniques

Approximation method	Certificate for	Soundness	Completeness
Additive ranking Supermartingale (Chakarov-Sankaranarayanan, CAV'13 etc.)	$\mathbb{E}^{\text{steps}} < \infty$ $(\mathbb{P}^{\text{reach}} = 1)$	Yes (with nondet. / continuous variable)	Yes (with nondet. / cont. var.)
Nonnegative repulsing supermartingale (Steinhardt+, IJRR'12 etc.)	$\mathbb{P}^{\text{reach}} \leq ?$	Yes (with nondet. / continuous variable)*	
γ-scaled submartingale (Urabe+, LICS'17)	$\mathbb{P}^{\text{reach}} \geq ?$	Yes (with nondet. / cont. var.)	-
ε-decreasing repulsing supermartingale (Chatterjee+, POPL'17)	$\mathbb{P}^{\text{reach}} \leq ?$	Yes (with nondet. / continuous var. / linearity assumpt.)	No

Soundness/completeness of martingale techniques

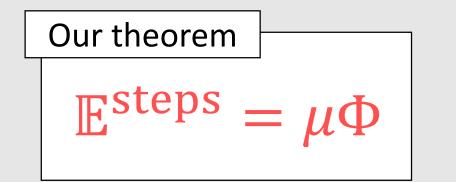






 \mathcal{F} ... the set of all (measurable) functions $f: L \times \mathbb{R}^V \to [0, \infty]$

$$\sqsubseteq \dots \quad f \sqsubseteq g \iff \forall s. f(s) \le g(s)$$

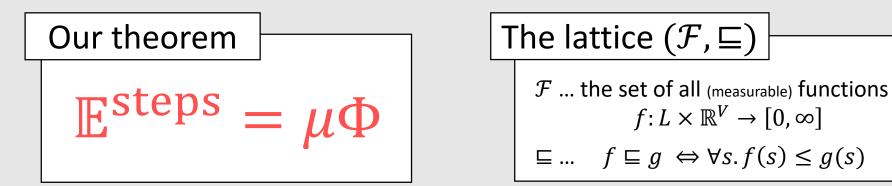


The lattice
$$(\mathcal{F}, \sqsubseteq)$$

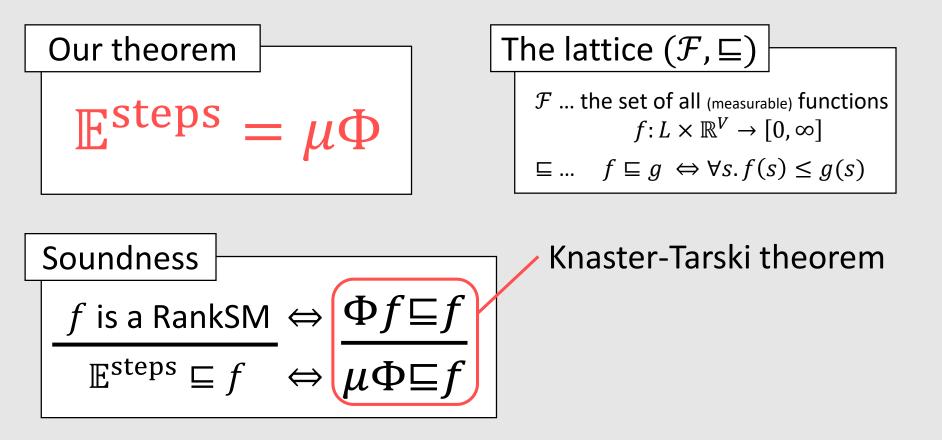
 \mathcal{F} ... the set of all (measurable) functions $f: L \times \mathbb{R}^V \to [0, \infty]$

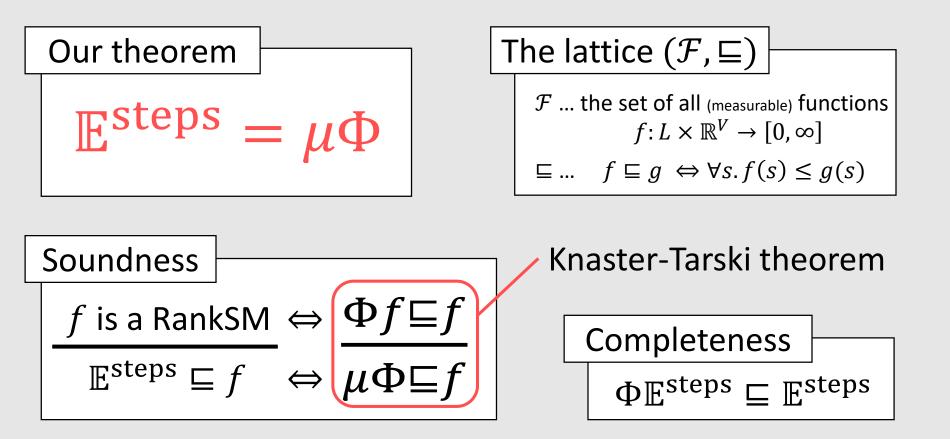
$$\sqsubseteq \dots \quad f \sqsubseteq g \iff \forall s. f(s) \le g(s)$$

Soundness
$$f$$
 is a RankSM $\mathbb{E}^{\text{steps}} \sqsubseteq f$

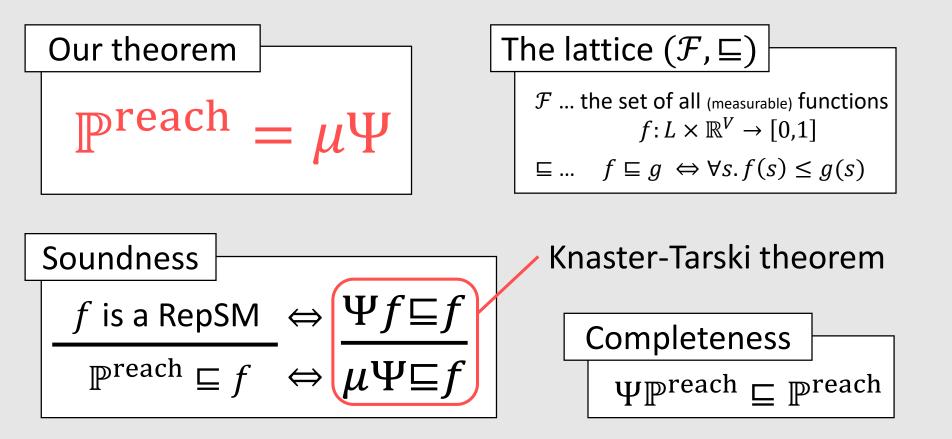


Soundness
$$f$$
 is a RankSM $\Leftrightarrow \Phi f \sqsubseteq f$ $\mathbb{E}^{\text{steps}} \sqsubseteq f \Leftrightarrow \mu \Phi \sqsubseteq f$





Soundness/completeness of NNRepSM



Our contributions

Soundness/completeness of martingale techniques for PPs with continuous variables and nondeterminism

> Characterization of martingale techniques via Knaster-Tarski fixed point theorem

Implementation and experiments

Synthesis algorithm

• Input: affine/polynomial PP

Approximation method	Certificate for	Soundness	Completeness
Additive ranking Supermartingale (Chakarov-Sankaranarayanan, CAV'13 etc.)	$\mathbb{E}^{\text{steps}} < \infty$ $(\mathbb{P}^{\text{reach}} = 1)$	Yes (with nondet. / continuous variable)	Yes (with nondet. / cont. var.)
Nonnegative repulsing supermartingale (Steinhardt+, URR'12 etc.)	$\mathbb{P}^{\text{reach}} \leq ?$	Yes (with nondet. / continuous variable)	
γ-scaled submartingale (Urabe+, LICS'17)	$\mathbb{P}^{\text{reach}} \geq ?$	Yes (with nondet. / cont. var.)	-
<i>E</i> -decreasing repulsing supermartingale (Chatterjee+, POPL'17)	$\mathbb{P}^{\text{reach}} \leq ?$	Yes (with nondet. / continuous var. / linearity assumpt.)	No

- control flow graph
- Translate PP to initial state x_{init}

set of terminal states

• For the set *F* of all affine/polynomial functions over states, solve:

minimize $f(x_{init})$, subject to (Upper NNRepSupM condition)

• Output: $f(x_{init})$

Overapprox. " $\sup \mathbb{P}^{reach}$ "

Synthesis algorithm

- Approximation method Certificate for Soundness Completeness Yes Additive ranking $\mathbb{E}^{\text{steps}} < \infty$ Yes (with nondet. / (with nondet. / Supermartingale continuous variable) $(\mathbb{P}^{\text{reach}}=1)$ cont. var.) (Chakarov-Sankaranarayanan, CAV'13 etc.) Nonnegative repulsing Yes (with nondet. / $\mathbb{P}^{\text{reach}} < ?$ supermartingale continuous variable) (Steinhardt+, URR'12 etc.) Yes γ -scaled submartingale $\mathbb{P}^{reach} > ?$ (with nondet. / (Urabe+, LICS'17) cont. var.) Yes (with nondet. / ε -decreasing repulsing $\mathbb{P}^{\text{reach}} < ?$ supermartingale continuous var. / No (Chatterjee+, POPL'17) linearity assumpt.)
- Input: affine/polynomial PP
 - control flow graph
- Translate PP to \dashv initial state x_{init}

set of terminal states

Can be reduced to LP/SDP problem

(e.g. Chakarov-Sankaranarayanan, CAV'13; Chatterjee+, CAV'16)

• For the set *F* of all affine/polynomial functions over states, solve:

 $\underset{f \in F}{\operatorname{minimize}} f(x_{init}) \quad , \quad \text{subject}$

• Output: $f(x_{init})$

subject to (Upper NNRepSupM condition)

Overapprox. " $\sup \mathbb{P}^{reach}$ "

Synthesis algorithm

- Approximation method Certificate for Soundness Completeness Yes Additive ranking $\mathbb{E}^{\text{steps}} < \infty$ Yes (with nondet. / (with nondet. / Supermartingale continuous variable) $(\mathbb{P}^{\text{reach}}=1)$ cont. var.) (Chakarov-Sankaranarayanan, CAV'13 etc.) Nonnegative repulsing Yes (with nondet. / $\mathbb{P}^{\text{reach}} < ?$ supermartingale continuous variable) (Steinhardt+, IJRR'12 etc.) Yes ν -scaled submartingale $\mathbb{P}^{\text{reach}} > ?$ (with nondet. / (Urabe+, LICS'17) cont. var.) Yes (with nondet. / ε -decreasing repulsing $\mathbb{P}^{\text{reach}} < ?$ supermartingale continuous var. / No (Chatterjee+, POPL'17) linearity assumpt.)
- Input: affine/polynomial PP
 - control flow graph
- Translate PP to initial state x_{init}

set of terminal states

Can be reduced to LP problem

(e.g. Chakarov-Sankaranarayanan, CAV'13)

• For the set *F* of all affine functions over states, solve:

 $\underset{f \in F}{\text{maximize } f(x_{init})} \quad , \quad \text{subject to (Lower γ-SclSubM condition)}$

• Output: $f(x_{init})$

Underapprox. " inf $\mathbb{P}^{\text{reach}}$ "

Experiments

γ -scaled submartingale

		Prog. I	II (linear)
	param.	time (s)	bound
(a-1)	$\begin{array}{c} p_1 = 0.2 \\ p_2 = 0.4 \end{array}$	0.026	≥ 0
	$p_1 = 0.8$ $p_2 = 0.1$	0.022	≥ 0.751
(a-2)	$\begin{array}{c} M_1 = -1 \\ M_2 = 2 \end{array}$	0.033	≥ 0
	$\begin{array}{c} M_1 = -2\\ M_2 = 1 \end{array}$	0.033	≥ 0.767
(a-3)	$\begin{array}{c} M_1 = -1 \\ M_2 = 2 \end{array}$	0.028	≥ 0
	$\begin{array}{c} M_1 = -2\\ M_2 = 1 \end{array}$	0.040	≥ 0.801
	$\begin{array}{c} c = 0.1 \\ p = 0.5 \end{array}$	0.056	≥ 0
(b)	$\begin{array}{c} c = 0.1 \\ p = 0.1 \end{array}$	0.054	≥ 0.148

Approximation method	Certificate for	Soundness	Completeness
Additive ranking Supermartingale (Chakarov-Sankaranarayanan, CAV'13 etc.)	$\mathbb{E}^{\text{steps}} < \infty$ $(\mathbb{P}^{\text{reach}} = 1)$	Yes (with nondet. / continuous variable)	Yes (with nondet. / cont. var.)
Nonnegative repulsing supermartingale (Steinhardt+, JJRR'12 etc.)	$\mathbb{P}^{\text{reach}} \leq ?$	Yes (with continuou	
γ-scaled submartingale (Urabe+, LICS'17)	$\mathbb{P}^{\text{reach}} \geq ?$	Yes (with nondet. / cont. var.)	-
E-decreasing repulsing supermartingale (Chatterjee+, POPL'17)	$\mathbb{P}^{\text{reach}} \leq ?$	Yes (with nondet. / continuous var. / linearity assumpt.)	No

Nonnegative repulsing submartingale

	Prog. 1	(linear)	Prog. II	(deg2 poly.)	Prog. II ((deg3 poly.)
param.	time (s)	bound	time (s)	bound	time (s)	bound
		≤ 0.825	530.298	≤ 0.6552	572.393	≤ 0.6555
$ p_1 = 0.8 \\ p_2 = 0.1 $	0.024	≤ 1	526.519	≤ 1.0	561.327	≤ 1.0

- Input: adversarial random walk (similar to the reading ex.)
- Nontrivial bounds found in 50% cases

Experiments

Approximation method	Certificate for	Soundness	Completeness
Additive ranking Supermartingale (Chakarov-Sankaranarayanan, CAV'13 etc.)	$\mathbb{E}^{\text{steps}} < \infty$ $(\mathbb{P}^{\text{reach}}=1)$	Yes (with nondet. / continuous variable)	Yes (with nondet. / cont. var.)
Nonnegative repulsing supermartingale (Steinhardt+, URR'12 etc.)	$\mathbb{P}^{\text{reach}} \leq ?$	Yes (with continuou	
γ-scaled submartingale (Urabe+, LICS'17)	$\mathbb{P}^{\text{reach}} \geq ?$	Yes (with nondet. / cont. var.)	-
ε-decreasing repulsing supermartingale (Chatterjee+, POPL'17)	$\mathbb{P}^{\text{reach}} \leq ?$	Yes (with nondet. / continuous var. / linearity assumpt.)	No

		U-NNRepSupM	1-RepSupM
(c-1)	$\frac{(0.4/0.6)^5 - (0.4/0.6)^{10}}{1 - (0.4/0.6)^{10}} \approx 0.116$	0.505	< 1
(c-2)	0.5	0.5	—
(c-3)	$\int_{0}^{1} \left(\frac{0.25}{0.75}\right)^{\lceil \log_2(1/x) \rceil} dx \approx 0.2$	0.5	
(c-4)	$(\frac{0.25}{0.75})^1 \approx 0.333$		< 1

Observed comparative advantage of nonnegative RepSM over ε -decreasing RepSM

Thank you for your attention $\ensuremath{\mathfrak{S}}$

Approximation method	Certificate for	Soundness	Completeness
Additive ranking Supermartingale (Chakarov-Sankaranarayanan, CAV'13 etc.)	$\mathbb{E}^{\text{steps}} < \infty$ $(\mathbb{P}^{\text{reach}} = 1)$	Yes (with nondet. / continuous variable)	Yes (with nondet. / cont. var.)
Nonnegative repulsing supermartingale (Steinhardt+, IJRR'12 etc.)	$\mathbb{P}^{\text{reach}} \leq ?$	Yes (with nondet. / continuous variable)*	
γ-scaled submartingale (Urabe+, LICS'17)	$\mathbb{P}^{\text{reach}} \geq ?$	Yes (with nondet. / cont. var.)	-
<i>ε</i> -decreasing repulsing supermartingale (Chatterjee+, POPL'17)	$\mathbb{P}^{\text{reach}} \leq ?$	Yes (with nondet. / continuous var. / linearity assumpt.)	No