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Summary

We introduce a novel algorithm of 

Bounded Value Iteration (BVI) for Stochastic Games.

What is BVI?
• Approximation technique for reachability
• Approximation with precision guarantee

• “Compute reachability prob. with 0.01% error range”

Our contribution: faster algorithm
• Existing algorithm [Kelmendi+, CAV’18] requires end component 

computation
• We omit it by doing global propagation
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Our model: Stochastic Game (SG) 

• A probabilistic system with controller and adversary

• Discrete time, finite states / actions

• Reachability objective
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Our model: Stochastic Game (SG) 

• A probabilistic system with controller and adversary

• Discrete time, finite states / actions

• Reachability objective

Example: car vs. pedestrian

• The car (controller) would like to pass the crossroad 
without hitting the pedestrian (adversary)
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Car vs. pedestrian in Stochastic Game

• A (pure positional) strategy of player X    …    𝜎: X′s states → (actions)
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• A (pure positional) strategy of player X    …    𝜎: X′s states → (actions)

• Reachability prob. under strategies 𝜎, 𝜏 of Controller/Adversary… 

𝑉𝜎,𝜏 𝑠 = Pr(Goal is visited during the play, starting from 𝑠, under 𝜎 and 𝜏)

P=0.9

P=0.1

• Approximate the following  𝑉: states → [0,1]

𝑉 𝑠 = max
𝜎

min
𝜏

𝑉𝜎,𝜏 (𝑠)

Problem
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？

Existing technique 1：Value Iteration (VI）
• Generates an increasing sequence of lower bounds
• Converges to the true value
• No precision guarantee

When should we
stop iteration?

Compute reachability prob. 
with 0.01% error range

No. of 
iterations
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Existing technique 2：Bounded Value Iteration (BVI)
[McMahan+,’05][Brazdil+,’14][Ujma, ’15][Haddad+,’18][Kelmendi+,’18]
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1           2           3           4           5

Reachability 
prob.

True value𝜀

Stop iteration when
𝜀 < 0.01%!

Existing technique 2：Bounded Value Iteration (BVI)
[McMahan+,’05][Brazdil+,’14][Ujma, ’15][Haddad+,’18][Kelmendi+,’18]

• Generates a decreasing sequence of upper bounds, too
• Converges to the true value
• Precision guarantee Compute reachability prob. 

with 0.01% error range

No. of 
iterations
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Technical challenge

Q: Is BVI a technique that merely performs VI twice in parallel,  
starting from some lower and upper bound?

A: No, it’s more than that.
To assure convergence of upper bound, we need some trick.
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How a lower bound  𝐿: states → [0,1] is updated via VI 
(at Controller’s states)
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action2

action3

Bellman operator 𝕏: 𝐿 ↦ 𝕏𝐿

VI performs 𝐿0 ↦ 𝕏𝐿0 ↦ 𝕏 𝕏𝐿0 ↦ 𝕏 𝕏 𝕏𝐿0 → ⋯

How a lower bound  𝐿: states → [0,1] is updated via VI 
(at Controller’s states)
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• Bellman operator is monotone over the set 
𝑓: 𝑠𝑡𝑎𝑡𝑒𝑠 → 0,1 𝑓 final = 1, 𝑓 sink = 0}

How the non-convergence issue of an upper bound occurs
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• Bellman operator is monotone over the set 
𝑓: 𝑠𝑡𝑎𝑡𝑒𝑠 → 0,1 𝑓 final = 1, 𝑓 sink = 0}

• Optimal reachability probability is the least fixed point of 
Bellman operator:

𝑉 = 𝜇𝕏

• Starting from 𝐿0 = ⊥ , VI generates a sequence
𝐿0 ≤ 𝕏𝐿0 ≤ 𝕏 𝕏𝐿0 ≤ ⋯ → 𝜇𝕏 = 𝑉

• Starting from 𝑈0 = ⊤ , VI generates a sequence
𝑈0 ≥ 𝕏𝑈0 ≥ 𝕏 𝕏𝑈0 ≥ ⋯ → 𝜈𝕏 ≥ 𝑉

How the non-convergence issue of an upper bound occurs

𝑓 ≤ 𝑔 ⇔ ∀𝑠. 𝑓 𝑠 ≤ 𝑔(𝑠)

Convergence of 
lower bound

Non-convergence 
of upper bound
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Existing technique to address the problem

• If the system is an MDP (i.e. there is no Adversary’s state), 
GFP can be matched with LFP by merging End Components
[Brazdil+,’14][Haddad+,’18]
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Existing technique to address the problem

• If the system is an MDP (i.e. there is no Adversary’s state), 
GFP can be matched with LFP by merging End Components
[Brazdil+,’14][Haddad+,’18]

• For an arbitrary SG, we periodically deflate an upper bound 
while running the standard VI [Kelmendi+,’18]

𝑠1
F

go

back

Singular update of bound over 
(a sound approx. of) specific ECs

Sub-MDP that constitutes a loop

𝑠2
go

P=0.5

P=0.5

wait

F
{𝑠1, 𝑠2}

go
P=0.5

P=0.5



Overview of our algorithm

• Every existing technique involves EC computation 
(or restrict the model so that non-convergence problem does not occur)

• EC computation can be a bottleneck of execution time of BVI
• Especially for SGs… EC computation is invoked many times
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Overview of our algorithm

• Every existing technique involves EC computation 
(or restrict the model so that non-convergence problem does not occur)

• EC computation can be a bottleneck of execution time of BVI
• Especially for SGs… EC computation is invoked many times

Our idea: ignore ECs, rather than compute
• Global propagation along the path to the final state

𝑠1
F

go

back

𝑠2
go

P=0.5

P=0.5

wait

𝑠1
F

go

back

𝑠2
go

P=0.5

P=0.5

wait

Global propagation
is not fooled by ECs!

Local propagation 
→VI “misjudges”
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Step 1: Construct a weighted graph from MDP and upper bound U
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Global
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Our alg.: “Compare paths to Final, and propagate the largest width”
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Dijkstra’s 
algorithm!
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Our algorithm for SGs

𝒢: SG, 𝜀: precision requirement

MDP

For every sufficiently large 𝑖, 
reachability prob. of ℳ𝑖 and 𝒢 are the same
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Our algorithm for SGs

𝒢: SG, 𝜀: precision requirement
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Theorem(P,T,H,H,2020). Let the while loop iterate forever in the 
above algorithm. Then it generates a decreasing sequence of 
functions that converges to optimal reachability probability:

𝑈0 ≥ 𝑈1 ≥ ⋯ ≥ 𝑈𝑖
𝑖→∞

𝑉

Our algorithm for SGs

𝒢: SG, 𝜀: precision requirement
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Experimental result

• Precision constant = 10−6

(i.e.  an approx. with 10−6 error range is returned for each successful runs)

• Green shaded = fastest
• Gray shaded = computation failure 

(TO=timeout (6hours), OOM= out of memory, SO=stack overflow)

[K+] Kelmendi, E., Kramer, J., Kretnsky, J., Weininger, M.: Value iteration for simple stochastic games: stopping 
criterion and learning algorithm. Proc. CAV 2018
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Fastest in 7/13
instances
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Experimental result

• Precision constant = 10−6

(i.e.  an approx. with 10−6 error range is returned for each successful runs)
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(TO=timeout (6hours), OOM= out of memory, SO=stack overflow)

[K+] Kelmendi, E., Kramer, J., Kretnsky, J., Weininger, M.: Value iteration for simple stochastic games: stopping 
criterion and learning algorithm. Proc. CAV 2018

Stably fastSlow/failure
sometimes



Summary

We introduced a novel algorithm of Bounded 
Value Iteration (BVI) which is faster than the 
existing one.

Future works

• Adapt the technique to a general reward setting 
(currently reachability only)

• Extend applicability of the technique to more 
complicated systems (e.g. black box ones)
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