

Widest Paths and Global Propagation in Bounded Value Iteration for

Stochastic Games

Kittiphon Phalakarn¹, <u>Toru Takisaka²</u>,

Thomas Haas³, Ichiro Hasuo^{2,4}

¹ University of Waterloo, Waterloo, Canada
 ² National Institute of Informatics, Tokyo, Japan
 ³ Technical University of Braunschweig, Braunschweig, Germany
 ⁴ The Graduate University for Advanced Studies (SOKENDAI), Tokyo, Japan

The authors are supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST; I.H. is supported by Grant-in-Aid No. 15KT0012, JSPS.

Summary

We introduce a novel algorithm of Bounded Value Iteration (BVI) for Stochastic Games.

What is BVI?

- Approximation technique for reachability
- Approximation with precision guarantee
 - "Compute reachability prob. with 0.01% error range"

Our contribution: faster algorithm

- Existing algorithm [Kelmendi+, CAV'18] requires end component computation
- We omit it by doing global propagation

Our model: Stochastic Game (SG)

- A probabilistic system with controller and adversary
- Discrete time, finite states / actions
- Reachability objective

Our model: Stochastic Game (SG)

- A probabilistic system with controller and adversary
- Discrete time, finite states / actions
- Reachability objective

Example: car vs. pedestrian

• The car (controller) would like to pass the crossroad without hitting the pedestrian (adversary)

• A (pure positional) strategy of player X ... $\sigma: (X's \text{ states}) \rightarrow (actions)$

• A (pure positional) strategy of player X ... $\sigma: (X's \text{ states}) \rightarrow (actions)$

• A (pure positional) strategy of player X ... $\sigma: (X's \text{ states}) \rightarrow (actions)$

- A (pure positional) strategy of player X ... $\sigma: (X's \text{ states}) \rightarrow (actions)$
- Reachability prob. under strategies σ , τ of Controller/Adversary...

 $V_{\sigma,\tau}(s) = \Pr(Goal \text{ is visited during the play, starting from } s, \text{ under } \sigma \text{ and } \tau)$

- A (pure positional) strategy of player X ... $\sigma: (X's \text{ states}) \rightarrow (actions)$
- Reachability prob. under strategies σ , τ of Controller/Adversary...

 $V_{\sigma,\tau}(s) = \Pr(\text{Goal is visited during the play, starting from s, under } \sigma \text{ and } \tau)$

- A (pure positional) strategy of player X ... $\sigma: (X's \text{ states}) \rightarrow (actions)$
- Reachability prob. under strategies σ , τ of Controller/Adversary...

 $V_{\sigma,\tau}(s) = \Pr(Goal \text{ is visited during the play, starting from } s, under \sigma \text{ and } \tau)$

Problem

• Approximate the following $V: (states) \rightarrow [0,1]$ maximize/minimize $V_{\sigma,\tau}$

$$V(s) = \max_{\sigma} \widetilde{\min_{\tau} V_{\sigma,\tau}}(s)$$

Controller/Adversary tries to

Existing technique 1: Value Iteration (VI)

- Generates an increasing sequence of lower bounds
- Converges to the true value
- No precision guarantee

Existing technique 1: Value Iteration (VI)

- Generates an increasing sequence of lower bounds
- Converges to the true value

Existing technique 2: Bounded Value Iteration (BVI)

[McMahan+,'05][Brazdil+,'14][Ujma, '15][Haddad+,'18][Kelmendi+,'18]

- Generates a decreasing sequence of upper bounds, too
- Converges to the true value
- Precision guarantee

Existing technique 2: Bounded Value Iteration (BVI)

[McMahan+,'05][Brazdil+,'14][Ujma, '15][Haddad+,'18][Kelmendi+,'18]

- Generates a decreasing sequence of upper bounds, too ullet
- Converges to the true value
- Precision guarantee Compute reachability prob. with 0.01% error range Reachability prob. Stop iteration when X $\varepsilon < 0.01\%!$ \bigcirc True value No. of 1

Technical challenge

Q: Is BVI a technique that merely performs VI twice in parallel, starting from some lower and upper bound?

A: No, it's more than that.

To assure convergence of upper bound, we need some trick.

How a lower bound L: (states) \rightarrow [0,1] is updated via VI

(at Controller's states)

How a lower bound $L: (states) \rightarrow [0,1]$ is updated via VI

(at Controller's states)

How a lower bound L: (states) \rightarrow [0,1] is updated via VI

(at Controller's states)

• Bellman operator is monotone over the set ${f:(states) \rightarrow [0,1] | f(final) = 1, f(sink) = 0}$

- Bellman operator is monotone over the set $\{f: (states) \rightarrow [0,1] \mid f(\text{final}) = 1, f(\text{sink}) = 0\}$
- Optimal reachability probability is the least fixed point of Bellman operator:

$$V = \mu \mathbb{X}$$

- Bellman operator is monotone over the set $\{f: (states) \rightarrow [0,1] \mid f(final) = 1, f(sink) = 0\}$
- Optimal reachability probability is the least fixed point of Bellman operator:

$$V = \mu \mathbb{X}$$

Convergence of

• Starting from $L_0 = \bot$, VI generates a sequence $L_0 \leq XL_0 \leq X(XL_0) \leq \cdots \rightarrow \mu X = V$

- Bellman operator is monotone over the set $\{f: (states) \rightarrow [0,1] \mid f(final) = 1, f(sink) = 0\}$
- Optimal reachability probability is the least fixed point of Bellman operator:

$$V = \mu \mathbb{X}$$

Starting from
$$L_0 = \bot$$
, VI generates a sequence
 $L_0 \leq XL_0 \leq X(XL_0) \leq \cdots \rightarrow \mu X = V$
Starting from $U_0 = T$, VI generates a sequence
 $U_0 \geq XU_0 \geq X(XU_0) \geq \cdots \rightarrow \nu X \geq V$

Convergence of

 If the system is an MDP (i.e. there is no Adversary's state), GFP can be matched with LFP by merging End Components [Brazdil+,'14][Haddad+,'18]

 If the system is an MDP (i.e. there is no Adversary's state), GFP can be matched with LFP by merging End Components [Brazdil+,'14][Haddad+,'18]

 If the system is an MDP (i.e. there is no Adversary's state), GFP can be matched with LFP by merging End Components [Brazdil+,'14][Haddad+,'18]

 If the system is an MDP (i.e. there is no Adversary's state), GFP can be matched with LFP by merging End Components [Brazdil+,'14][Haddad+,'18]

 If the system is an MDP (i.e. there is no Adversary's state), GFP can be matched with LFP by merging End Components [Brazdil+,'14][Haddad+,'18]

 If the system is an MDP (i.e. there is no Adversary's state), GFP can be matched with LFP by merging End Components
 [Brazdil+,'14][Haddad+,'18]

Existing technique to address the problem

 If the system is an MDP (i.e. there is no Adversary's state), GFP can be matched with LFP by merging End Components [Brazdil+,'14][Haddad+,'18]

 For an arbitrary SG, we periodically *deflate* an upper bound while running the standard VI [Kelmendi+,'18] Singular update of bound

Singular update of bound over (a sound approx. of) specific ECs

Overview of our algorithm

- Every existing technique involves EC computation (or restrict the model so that non-convergence problem does not occur)
- EC computation can be a bottleneck of execution time of BVI
 - Especially for SGs... EC computation is invoked many times

Overview of our algorithm

- Every existing technique involves EC computation (or restrict the model so that non-convergence problem does not occur)
- EC computation can be a bottleneck of execution time of BVI
 - Especially for SGs... EC computation is invoked many times

Our idea: ignore ECs, rather than compute

• Global propagation along the path to the final state

Overview of our algorithm

- Every existing technique involves EC computation (or restrict the model so that non-convergence problem does not occur)
- EC computation can be a bottleneck of execution time of BVI
 - Especially for SGs... EC computation is invoked many times

Our idea: ignore ECs, rather than compute

• Global propagation along the path to the final state

State	Action	Val. of U after a transition	Possible next state
Initial	go	0.6	Final, Failure
Initial	wait	1	Initial

the minimum weight of constituting edges

the minimum weight of constituting edges


```
1 procedure BVI_WP(\mathcal{G}, \varepsilon)
         L_0 \leftarrow \bot, \ U_0 \leftarrow \top, \ i \leftarrow 0
\mathbf{2}
         while U_i(s_I) - L_i(s_I) > \varepsilon do
3
               i++
4
               L_i \leftarrow \mathbb{X}L_{i-1}
                                                                  // value iteration for lower bounds
\mathbf{5}
               \mathcal{M}_i \leftarrow \mathcal{M}_{\text{PlRd}}(\mathcal{G}, L_i)
                                                                                                // player reduction
6
           \mathcal{W}_i \leftarrow \mathcal{W}_{\mathrm{LcPg}}(\mathcal{M}_i, U_{i-1})
                                                                                               // local propagation
\mathbf{7}
               U_i \leftarrow \min\{U_{i-1}, WPW(\mathcal{W}_i)\}
                                                                                   // widest path computation
8
         return U_i(s_I)
9
```

```
G: SG, \varepsilon: precision requirement
1 procedure <u>BVI_WP(\mathcal{G}, \varepsilon)</u>
         L_0 \leftarrow \bot, U_0 \leftarrow \top, i \leftarrow 0
\mathbf{2}
         while U_i(s_I) - L_i(s_I) > \varepsilon do
3
                i++
4
               L_i \leftarrow \mathbb{X}L_{i-1}
                                                                  // value iteration for lower bounds
\mathbf{5}
                \mathcal{M}_i \leftarrow \mathcal{M}_{\text{PlRd}}(\mathcal{G}, L_i)
                                                                                                 // player reduction
6
           \mathcal{W}_i \leftarrow \mathcal{W}_{\mathrm{LcPg}}(\mathcal{M}_i, U_{i-1})
                                                                                                // local propagation
\mathbf{7}
               U_i \leftarrow \min\{U_{i-1}, \operatorname{WPW}(\mathcal{W}_i)\}
                                                                                   // widest path computation
8
          return U_i(s_I)
9
```

1	procedure BVI_WP(\mathcal{G}, ε) \mathcal{G} : SG, ε : precision requirement
2	$L_0 \leftarrow \bot, \ U_0 \leftarrow \top, \ i \leftarrow 0$
3	while $U_i(s_I) - L_i(s_I) > \varepsilon$ do
4	i++
5	$L_i \leftarrow \mathbb{X}L_{i-1}$ // value iteration for lower bounds
6	$\mathcal{M}_i \leftarrow \mathcal{M}_{\mathrm{PlRd}}(\mathcal{G}, L_i)$ // player reduction
7	$\mathcal{W}_i \leftarrow \mathcal{W}_{\mathrm{LcPg}}(\mathcal{M}_i, U_{i-1})$ // local propagation
8	$U_i \leftarrow \min\{U_{i-1}, \operatorname{WPW}(\mathcal{W}_i)\}$ // widest path computation
9	$return U_i(s_I)$

```
1 procedure BVI_WP(\mathcal{G}, \varepsilon) \mathcal{G}: SG, \varepsilon: precision requirement
          L_0 \leftarrow \bot, \ U_0 \leftarrow \top, \ i \leftarrow 0
\mathbf{2}
          while U_i(s_I) - L_i(s_I) > \varepsilon do
3
                i++
4
               \frac{L_i \leftarrow \mathbb{X}L_{i-1}}{\mathcal{M}_i \leftarrow \mathcal{M}_{\text{PlRd}}(\mathcal{G}, L_i)}
                                                                    // value iteration for lower bounds
\mathbf{5}
                                                                                                    // player reduction
6
           \mathcal{W}_i \leftarrow \mathcal{W}_{\mathrm{LcPg}}(\mathcal{M}_i, U_{i-1})
                                                                                                   // local propagation
\mathbf{7}
               U_i \leftarrow \min\{U_{i-1}, WPW(\mathcal{W}_i)\}
                                                                                      // widest path computation
8
          return U_i(s_I)
9
```


1	procedure BVI_WP(\mathcal{G}, ε) \mathcal{G} : SG, ε : precision requirement
2	$L_0 \leftarrow \bot, \ U_0 \leftarrow \top, \ i \leftarrow 0$
3	while $U_i(s_I) - L_i(s_I) > \varepsilon$ do
4	i++
5	$L_i \leftarrow \mathbb{X}L_{i-1}$ // value iteration for lower bounds
6	$\mathcal{M}_i \leftarrow \mathcal{M}_{\mathrm{PIRd}}(\mathcal{G}, L_i)$ // player reduction
7	$\mathcal{W}_i \leftarrow \mathcal{W}_{LcPg}(\mathcal{M}_i, U_{i-1})$ // local propagation
8	$U_i \leftarrow \min\{U_{i-1}, \operatorname{WPW}(\mathcal{W}_i)\}$ // widest path computation
9	$\mathbf{return} \ U_i(s_I)$

<u>Theorem(P,T,H,H,2020)</u>. Let the while loop iterate forever in the above algorithm. Then it generates a decreasing sequence of functions that converges to optimal reachability probability:

$$U_0 \ge U_1 \ge \dots \ge U_i \xrightarrow{i \to \infty} V$$

Experimental result

model	Param	#states	#trans	#EC	[K+	, Ver.1]	[K+	, Ver.2]	[K·	+, lear	ning]	Ou	r alg.
model	1 arain.				itr	time(s)	itr	time(s)	itr	visit%	time(s)	itr	time(s)
mdam	3	62245	151143	1	121	3	121	4	17339	49.3	15	120	5
masm	4	335211	882765	1	125	15	125	47	91301	42.1	86	124	38
	5	8842	60437	4421	7	7	7	1	167	6.9	14	7	<1
cloud	6	34954	274965	17477	11	177	11	5	41	0.6	3	11	1
	7	139402	1237525	69701	11	19721	11	62	41	0.2	4	11	5
	3	12475	15228	2754	2	<1	2	<1	972	49.0	137	2	<1
teamform	4	96665	116464	19800	2	<1	2	<1	4154	34.6	9603	2	<1
	5	907993	1084752	176760	2	< 1	2	<1			ТО	2	<1
investor	50	211321	673810	29690	441	184	441	249			ТО	364	48
investor	100	807521	2587510	114390	801	3318		OOM			ТО	688	736
manyECs	500	1004	3007	502	6	7	6	7			ТО	5	<1
	1000	2004	6007	1002	6	51	6	51			ТО	5	<1
	5000	10004	30007	5002		SO		SO			ТО	5	<1

[K+] Kelmendi, E., Kramer, J., Kretnsky, J., Weininger, M.: *Value iteration for simple stochastic games: stopping criterion and learning algorithm*. Proc. CAV 2018

- Precision constant = 10^{-6} (i.e. an approx. with 10^{-6} error range is returned for each successful runs)
- Green shaded = fastest
- Gray shaded = computation failure (TO=timeout (6hours), OOM= out of memory, SO=stack overflow)

Experimental result

model	Param	#states	#trans	# EC	[K+	, Ver.1]	[K+	, Ver.2]	[K-	+, lear	ning]	Ou	r alg.
model	1 arain.				itr	time(s)	itr	time(s)	itr	visit%	$\operatorname{time}(s)$	itr t	time(s)
mdam	3	62245	151143	1	121	3	121	4	17339	49.3	15	120	5
masm	4	335211	882765	1	125	15	125	47	91301	42.1	86	124	38
	5	8842	60437	4421	7	7	7	1	167	6.9	14	7	<1
cloud	6	34954	274965	17477	11	177	11	5	41	0.6	3	11	1
	7	139402	1237525	69701	11	19721	11	62	41	0.2	4	11	5
	3	12475	15228	2754	2	<1	2	<1	972	49.0	137	2	<1
team form	4	96665	116464	19800	2	<1	2	<1	4154	34.6	9603	2	<1
	5	907993	1084752	176760	2	<1	2	<1			ТО	2	<1
invostor	50	211321	673810	29690	441	184	441	249			ТО	364	48
investor	100	807521	2587510	114390	801	3318		OOM			ТО	688	736
manyECs	500	1004	3007	502	6	7	6	7			ТО	5	<1
	1000	2004	6007	1002	6	51	6	51			ТО	5	<1
	5000	10004	30007	5002		SO		SO			ТО	5	<1

[K+] Kelmendi, E., Kramer, J., Kretnsky, J., Weininger, M.: Value iteration for simple stochastic games: stopping criterion and learning algorithm. Proc. CAV 2018

Fastest in 7/13 instances

- Precision constant = 10^{-6} (i.e. an approx. with 10^{-6} error range is returned for each successful runs)
- Green shaded = fastest
- Gray shaded = computation failure (TO=timeout (6hours), OOM= out of memory, SO=stack overflow)

Experimental result

model	Param	#states	#trans	#EC	[K+, Ver.1]		[K+, Ver.2]		[K-	+, learr	Our alg.		
model	i arain.				itr	time(s)	itr	time(s)	itr	visit%	time(s)	itr t	time(s)
na d'ana	3	62245	151143	1	121	3	121	4	17339	49.3	15	120	5
masm	4	335211	882765	1	125	15	125	47	91301	42.1	86	124	38
	5	8842	60437	4421	7	7	7	1	167	6.9	14	7	<1
cloud	6	34954	274965	17477	11	177	11	5	41	0.6	3	11	1
	7	139402	1237525	69701	11	19721	11	62	41	0.2	4	11	5
	3	12475	15228	2754	2	<1	2	<1	972	49.0	137	2	<1
team form	4	96665	116464	19800	2	<1	2	<1	4154	34.6	9603	2	<1
	5	907993	1084752	176760	2	<1	2	<1			TO	2	<1
invostor	50	211321	673810	29690	441	184	441	249			TO	364	48
Investor	100	807521	2587510	114390	801	3318		OOM			TO	688	736
manyECs	500	1004	3007	502	6	7	6	7			TO	5	<1
	1000	2004	6007	1002	6	51	6	51			TO	5	<1
	5000	10004	30007	5002		SO	J	SO			ТО	5	<1

[K+] Kelmendi, E., Kramer, J., Kretnsky, J., Weininger, M.: Value iteratio P for simple stochastic games: stopping criterion and learning algorithm. Proc. CAV 2018

Slow/failure sometimes

Stably fast

- Precision constant = 10^{-6} (i.e. an approx. with 10^{-6} error range is returned for each successful runs)
- Green shaded = fastest
- Gray shaded = computation failure (TO=timeout (6hours), OOM= out of memory, SO=stack overflow)
Summary

We introduced a novel algorithm of Bounded Value Iteration (BVI) which is faster than the existing one.

Future works

- Adapt the technique to a general reward setting (currently reachability only)
- Extend applicability of the technique to more complicated systems (e.g. black box ones)