»

N ERATO
MMSD

KAKENH.

Widest Paths and Global Propagation
in Bounded Value Iteration for

Stochastic Games

Kittiphon Phalakarn?, Toru Takisaka?,

Thomas Haas3, Ichiro Hasuo?*

1 University of Waterloo, Waterloo, Canada
2 National Institute of Informatics, Tokyo, Japan
3 Technical University of Braunschweig, Braunschweig, Germany
4 The Graduate University for Advanced Studies (SOKENDAI), Tokyo, Japan

The authors are supported by ERATO HASUO Metamathematics for Systems Design
Project (No. JPMJER1603), JST; I.H. is supported by Grant-in-Aid No. 15KT0012, JSPS.

Summary

We introduce a novel algorithm of
Bounded Value Iteration (BVI) for Stochastic Games.

What is BVI?

e Approximation technique for reachability

* Approximation with precision guarantee
e “Compute reachability prob. with 0.01% error range”

Our contribution: faster algorithm

* Existing algorithm [Kelmendi+, CAV’18] requires end component
computation

* We omit it by doing global propagation

Our model: Stochastic Game (SG)

* A probabilistic system with controller and adversary

* Discrete time, finite states / actions P=0.3 P=0.7

* Reachability objective 8o

o)
back <

wait

Our model: Stochastic Game (SG)

* A probabilistic system with controller and adversary

* Discrete time, finite states / actions P=0.3 P=0.7

* Reachability objective 8o

o)
back <

wait

Example: car vs. pedestrian

* The car (controller) would like to pass the crossroad
without hitting the pedestrian (adversary)

. ™
& :

Car vs. pedestrian in Stochastic Game

Pedestrian’s
action

Pass

[]: Controller’s state
QO : Adversary’s state

Car’s action

Car vs. pedestrian in Stochastic Game

Pedestrian’s
action

Pass

[]: Controller’s state
O : Adversary’s state

Car’s action

Car vs. pedestrian in Stochastic Game

Pedestrian’s
action

Pass

[]: Controller’s state
O: Adversary’s state

Car’s action

Car vs. pedestrian in Stochastic Game

Pedestrian’s
action

Pass

[]: Controller’s state
O : Adversary’s state

Car’s action

Car vs. pedestrian in Stochastic Game

Pedestrian’s
action

Pass

[]: Controller’s state
QO : Adversary’s state

Car’s action

Car vs. pedestrian in Stochastic Game

Pedestrian’s
action

Pass

[]: Controller’s state

Car’s action
QO : Adversary’s state

10

Car vs. pedestrian in Stochastic Game

Pedestrian’s
action

Pass

[]: Controller’s state

Car’s action
QO : Adversary’s state

11

Car vs. pedestrian in Stochastic Game

Pedestrian’s
action

Pass

[]: Controller’s state

Car’s action
QO : Adversary’s state

* A (pure positional) Strategy of player X ... o:(X's states) — (actions)

Car vs. pedestrian in Stochastic Game

Pedestrian’s
action

Pass

[]: Controller’s state

Car’s action
QO : Adversary’s state

* A (pure positional) Strategy of player X ... o:(X's states) — (actions)

Car vs. pedestrian in Stochastic Game

Pedestrian’s
action

Pass

[]: Controller’s state

Car’s action
QO : Adversary’s state

* A (pure positional) Strategy of player X ... o:(X's states) — (actions)

Car vs. pedestrian in Stochastic Game

Pedestrian’s
action

Pass

[]: Controller’s state
QO : Adversary’s state

Car’s action

* A (pure positional) Strategy of player X ... o:(X's states) — (actions)

* Reachability prob. under strategies o, T of Controller/Adversary...

Va,r (S) = Pr(Goal is visited during the play, starting from s, under ¢ and 7)

Car vs. pedestrian in Stochastic Game

V7 =0.9

Pedestrian’s
action

Pass

[]: Controller’s state

Car’s action
QO : Adversary’s state

VO',T =0.9 VO'T =0

)

* A (pure positional) Strategy of player X ... o:(X's states) — (actions)

* Reachability prob. under strategies o, T of Controller/Adversary...

Va,r (S) = Pr(Goal is visited during the play, starting from s, under ¢ and 7)

Car vs. pedestrian in Stochastic Game

V7 =0.9

Pedestrian’s
action

Pass

[]: Controller’s state

Car’s action
QO : Adversary’s state

VO',T =0.9 VO',T =0

* A (pure positional) Strategy of player X ... o:(X's states) — (actions)

* Reachability prob. under strategies o, T of Controller/Adversary...

Va,r (S) = Pr(Goal is visited during the play, starting from s, under ¢ and 7)

Problem [

Controller/Adversary tries to
maximize/minimize V, ;

» Approximate the following V: (states) — [0,1]

V(s) = maxminV, ; (s)
o T

Existing technique 1: Value Iteration (VI)
* Generates an increasing sequence of lower bounds
* Converges to the true value
* No precision guarantee

A
Reachability

prob.

True value

No. of
iterations

Existing technique 1: Value Iteration (VI)
* Generates an increasing sequence of lower bounds
* Converges to the true value

* No precision guarantee —
Compute reachability prob.
with 0.01% error range
A N
Reachability LIEJ'LI
prob. When should we s

stop iteration?

No. of
iterations

Existing technique 2 : Bounded Value Iteration (BVI)

[McMahan+,05][Brazdil+, 14][Ujma, ‘15][Haddad+, 18][Kelmendi+, 18]
* Generates a decreasing sequence of upper bounds, too

* Converges to the true value
* Precision guarantee

A
Reachability

prob.

True value

No. of
iterations

Existing technique 2 : Bounded Value Iteration (BVI)

[McMahan+,05][Brazdil+, 14][Ujma, ‘15][Haddad+, 18][Kelmendi+, 18]
* Generates a decreasing sequence of upper bounds, too

* Converges to the true value

* Precision guarantee Compute reachability prob.
with 0.01% error range
A ™
Reachability ﬁd
prob. =

Stop iteration when
€ < 0.01%!

No. of
iterations

Technical challenge

Q: Is BVI a technique that merely performs VI twice in parallel,
starting from some lower and upper bound?

A: No, it’s more than that.
To assure convergence of upper bound, we need some trick.

How a lower bound L: (states) — [0,1] is updated via VI

/

N

— Strategy estimation via local optimality

(at Controller’s states)

Bound update via estimated strategy

L=0.5

actionl

L=0.5

action2

»

L=0.8

action3

L=0.1

Choose an action that maximizes

L after a transition

1=0.5
1=0.5>0.8 /

Back-propagate the value of L
along the transition arrow

> L=0.8

L=0.1

)

A

23

How a lower bound L: (states) — [0,1] is updated via VI

(at Controller’s states)

— Strategy estimation via local optimality — Bound update via estimated strategy

actionl L=0.5 : 1=0.5

L=0.5 ~ction? act.2 | A L=O.5%O.8 /
» |L=0.8 f] » [L=0.8
faia
action3 L=0.1 1=0.1
Choose an action that maximizes Back-propagate the value of L

L after a transition along the transition arrow

L 4

Bellman operator X: L — XL

24

How a lower bound L: (states) — [0,1] is updated via VI

(at Controller’s states)

— Strategy estimation via local optimality — Bound update via estimated strategy

actionl L=0.5 : 1=0.5

L=0.5 ~ction? act.2 | A L=O.5%O.8 /
*_[L=0.8 2 o |L=0.8
faia
action3 L=0.1 1=0.1
Choose an action that maximizes Back-propagate the value of L

L after a transition along the transition arrow

L 4

Bellman operator X: L — XL

VI performs Ly = XLy = X(XL,) = X(x(XLO)) N

How the non-convergence issue of an upper bound occurs

* Bellman operator is monotone over the set
{f:(states) — |0,1] | f(final) = 1, f(sink) = 0}

How the non-convergence issue of an upper bound occurs

E}ﬁVS.f(S) < g(s)]
* Bellman operator is monotone over the set

{f:(states) — |0,1] | f(final) = 1, f(sink) = 0}

How the non-convergence issue of an upper bound occurs

E}ﬁVS.f(S) < g(s)]
* Bellman operator is monotone over the set

{f:(states) — |0,1] | f(final) = 1, f(sink) = 0}

 Optimal reachability probability is the least fixed point of
Bellman operator:
V =uX

How the non-convergence issue of an upper bound occurs

E}ﬁVS.f(S) < g(s)]
* Bellman operator is monotone over the set

{f:(states) — |0,1] | f(final) = 1, f(sink) = 0}

 Optimal reachability probability is the least fixed point of

Bellman operator:
V =uX

Convergence of
lower bound
e Starting from Ly, = L, VI generates a sequence

Ly < XLy < X(XLy) <> uX=V

How the non-convergence issue of an upper bound occurs

E}ﬁVS.f(S) < g(s)]
* Bellman operator is monotone over the set

{f:(states) — |0,1] | f(final) = 1, f(sink) = 0}

 Optimal reachability probability is the least fixed point of

Bellman operator:
V =uX

Convergence of
lower bound
e Starting from Ly, = L, VI generates a sequence

Non-convergence
i of upper bound
° Startlng from UO =T, VI generates a sequence

Existing technique to address the problem

* If the system is an MDP (i.e. there is no Adversary’s state),

GFP can be matched with LFP by merging End Components
[Brazdil+’14][Haddad-+, 18]

Sub-MDP that constitutes a loop]

wait
back
P=0.5 F
S _/_\S go /
1 _/ 2
- e

Existing technique to address the problem

If the system is an MDP (i.e. there is no Adversary’s state),

GFP can be matched with LFP by merging End Components
[Brazdil+’14][Haddad-+, 18]

wait

i

g0

Sub-MDP that constitutes a loop]

Existing technique to address the problem

* If the system is an MDP (i.e. there is no Adversary’s state),

GFP can be matched with LFP by merging End Components
[Brazdil+’14][Haddad-+, 18]

Sub-MDP that constitutes a loop]

wait
S S g0 ﬁ' i
1

Existing technique to address the problem

* If the system is an MDP (i.e. there is no Adversary’s state),

GFP can be matched with LFP by merging End Components
[Brazdil+’14][Haddad-+, 18]

Sub-MDP that constitutes a loop]

wait
S S g0 ﬁ' i
1

Existing technique to address the problem

If the system is an MDP (i.e. there is no Adversary’s state),
GFP can be matched with LFP by merging End Components

[Brazdil+,'14][Haddad+,'18]

wait

P=0.5

P=0.5

Sub-MDP that constitutes a loop]

Existing technique to address the problem

* If the system is an MDP (i.e. there is no Adversary’s state),

GFP can be matched with LFP by merging End Components
[Brazdil+’14][Haddad-+, 18]

Sub-MDP that constitutes a loop]

wait

P=0.5

back
s Sl Y
1_/'2 1,22

go P=05 P=05

Existing technique to address the problem

* If the system is an MDP (i.e. there is no Adversary’s state),
GFP can be matched with LFP by merging End Components

[Brazdil+,’14][Haddad+, 18]
Sub-MDP that constitutes a loop]

wait
0 back
P=0.5 P=0.5
| (o) F go F
i Sl Wy
\
go P=05 P=05

* For an arbitrary SG, we periodically deflate an upper bound

while running the standard VI [keimendi+/18]
Singular update of bound over
(a sound approx. of) specific ECs

Overview of our algorithm

* Every existing technique involves EC computation
(or restrict the model so that non-convergence problem does not occur)

 EC computation can be a bottleneck of execution time of BVI
* Especially for SGs... EC computation is invoked many times

Overview of our algorithm

* Every existing technique involves EC computation
(or restrict the model so that non-convergence problem does not occur)

 EC computation can be a bottleneck of execution time of BVI
* Especially for SGs... EC computation is invoked many times

Our idea: ignore ECs, rather than compute
* Global propagation along the path to the final state

Local propagation
- —~>VI “misjudges”

wait

Overview of our algorithm

* Every existing technique involves EC computation
(or restrict the model so that non-convergence problem does not occur)

 EC computation can be a bottleneck of execution time of BVI
Especially for SGs... EC computation is invoked many times

Our idea: ignore ECs, rather than compute
* Global propagation along the path to the final state

Local propagation

wait

- —~>VI “misjudges”

(Global propagation

0 back P=0.5 TF
51 _/Sz i}
- e

is not fooled by ECs !]

Step 1: Construct a weighted graph from MDP and upper bound U

Uu=1
Final
waitO P=1 P=0.6
go

Initial
U=1

P=0.4 Failure

u=0

Step 1: Construct a weighted graph from MDP and upper bound U

U=1

wait P=1 P=0.6 Final State Action Val.of U after Possible

a transition next state
— go
Initial Initial go 0.6 Final, Failure

U=1 e . .

_ i Initial wait 1 Initial
P=0.4 Failure

u=0

Step 1: Construct a weighted graph from MDP and upper bound U

wait

P

Initial

1

P=0.6

go

U=1

P

0.4

Initial

U=1

Final

Failure

u=0

State Action Val.of U after Possible
a transition next state
lglnitia go 0.6 Final, Failure
Initial wait 1 Initial

Step 1: Construct a weighted graph from MDP and upper bound U

Initial

U=1

P

wait O P=1 P=0.6
g0

0.4

Initial

U=1

Final

State Action Val.of U after Possible
a transition next state

Failure

u=0

Initial go 0.6 Final, Failur
Initial wait 1 Initial
Final

Failure

Step 1: Construct a weighted graph from MDP and upper bound U

Initial

U=1

P

wait O P=1 P=0.6
g0

0.4

Initial

U=1
Final State Action Val.of U after Possible
a transition next state
V——S
Initial go (0.6) Final, Failure
g
_ Initial wait 1 Initial
Failure
U=0
0.6 Final
0.6 Failure

Step 1: Construct a weighted graph from MDP and upper bound U

Initial

U=1

P

wait O P=1 P=0.6
g0

0.4

Initial

U=1
Final State Action Val.of U after Possible
a transition next state
Initial go 0.6 Final, Failure
_ Initial wait 1 Initial
Failure | %
U=0
0.6 Final
0.6 Failure

u=1

Step 2: update an upper bound U waitopﬂ
=

P=04

O 1 0.6 Final

Initial

0.6 Failure

Step 2: update an upper bound U waitopﬂ
=

P=04

O 1 0.6 Final

Initial

0.6 Failure

VI: “Compare outgoing edges, and propagate the largest weight”

Step 2: update an upper bound U waitopﬂ
=

P=0.4

O 1 0.6 Final

Initial

0.6 Failure

VI: “Compare outgoing edges, and propagate the largest weight”

Step 2: update an upper bound U waitopﬂ
=

P=0.4

u=0

0.6 Final

Initial

V=1 0.6 Failure

VI: “Compare outgoing edges, and propagate the largest weight”

u=1

Step 2: update an upper bound U waitopﬂ }

U=1

0.6 Final
Initial

V=1 0.6 Failure

P=0.4

u=0

VI: “Compare outgoing edges, and propagate the largest weight”

Step 2: update an upper bound U

Initial

U=1

0.6

0.6

wait

— go

P=1

u=1

Final

Failure

P=0.6

P=0.4

u=1

u=0

VI: “Compare outgoing edges, and propagate the largest weight”

u=1

Step 2: update an upper bound U waitopﬂ
&0
o P=0.4
O 1 0.6 Final
Initial
0.6 Failure

Our alg.: “Compare paths to Final, and propagate the largest width”

[the minimum weight of
constituting edges

Step 2: update an upper bound U

():

Initial

0.6

0.6

wait 0 P=1
go

U=1

P=0.4

Final

Failure

u=1

u=0

Our alg.: “Compare paths to Final, and propagate the largest width”

,///tzzi’

[the minimum weight of

constituting edges

— 0.6 _

Initia Final

— 1 — 0.6 .
Initia » |nitial Final

— 1 — 1 —
Initia Initial Initial

0.6

Final

Step 2: update an upper bound U

():

Initial

0.6

0.6

wait 0 P=1
go

U=1

P=0.4

Final

Failure

u=1

u=0

Our alg.: “Compare paths to Final, and propagate the largest width”

,///tzzi’

[the minimum weight of

constituting edges

Initia Final
— 1 — .
Initia > |nitial —J!IBL* Final
— 1 — 1 —
Initia Initial Initial

;

Final

u=1

Step 2: update an upper bound U waitopﬂ
5
o P=0.4
O 1 0.6 Final
Initial
=06 0.6 Failure

Our alg.: “Compare paths to Final, and propagate the largest width”

[the minimum \m
constituting edges
Initia —'—>m Final

— 1 — .
Initia > |nitial Final

— 1 — 1 — -
Initia > |nitial > |nitial > Final

u=1

Step 2: update an upper bound U waitopﬂ
5
o P=0.4
O 1 0.6 Final
Initial
=06 0.6 Failure

Our alg.: “Compare paths to Final, and propagate the largest width”

[the minimum \m
constituting edges
Initia —'—>m Final

— 1 — .
Initia > |nitial Final

— 1 — 1 — -
Initia > |nitial > |nitial > Final

u=1

Step 2: update an upper bound U waitopﬂ
5
o P=0.4
O 1 0.6 Final
Initial
=06 0.6 Failure

Our alg.: “Compare paths to Final, and propagate the largest width”

p
Initia Final Global

Propagation!

Initia > |nitial Final

%
%

Initia > |nitial » |nitial

» Final

=

u=1

Step 2: update an upper bound U waitopﬂ
5
o P=0.4
m 0.6 Final
Initial
=06 0.6 Failure

Our alg.: “Compare paths to Final, and propagate the largest width”

p
Initia Final Global

Propagation!

Initia > |nitial Final

%
%

Initia > |nitial » |nitial

» Final

=

Step 2: update an upper bound U waitOm
=

P=0.4

m 0.6 Final
Initial
V=06 0.6 Failure

Our alg.: “Compare paths to Final, and propagate the largest width”

Propagation!

Initia Final Global
P S

Initia

<:/\

> |nitial Final
> “—— |nitial > Final

Initia Initial

Step 2: update an upper bound U waitOm
=

P=0.4

m 0.6 Final
Initial
V=06 0.6 Failure

Our alg.: “Compare paths to Final, and propagate the largest width”

Initia Final

Propagation!

‘ algorithm!
<:I Global

Initia

<:/\

> |nitial Final
> “—— |nitial > Final

Initia Initial

Our algorithm for SGs

1 procedure BVI_-WP(G, ¢)
Lo+ 1, Uy T,7940

3 while U;(sr) — Li(s7) > £ do

4 1++

5 L; + XL; 4 // value iteration for lower bounds
6 M; +— Mpira(G, L;) // player reduction
7 Wi +— Wrepe (M, Ui 1) // local propagation
8 U; +— min{U,_1, WPW(W,)} // widest path computation

9 return U;(sr)

Our algorithm for SGs

1 procedure BVI_WP(G. ¢ G: SG, €: precision requirement
Lo+ 1, Uy T,7940

3 while U;(sr) — Li(s7) > £ do

4 1++

5 L; + XL; 4 // value iteration for lower bounds
6 M; +— Mpira(G, L;) // player reduction
7 Wi +— Wrepe (M, Ui 1) // local propagation
8 U; +— min{U,_1, WPW(W,)} // widest path computation

9 return U;(sr)

Our algorithm for SGs

1 procedure BVI_-WP(G, ¢) G: SG, €: precision requirement

Lo+ 1, Uy T,7940
3 while U;(sr) — Li(s7) > £ do
4 1+
5 L; + XL; 4 // value iteration for lower bounds
6 M; +— Mpra(G. L;) // player reduction
7 Wi +— Wrepe (M, Ui 1) // local propagation
8 U; +— min{U,_1, WPW(W,)} // widest path computation
9 return U;(sr)

64

Our algorithm for SGs

1 procedure BVI_.WP(G, ¢) G: SG, &: precision requirement
Lo+ 1, Uy T,7940

3 while U;(sr) — Li(s7) > £ do

4 1++

5 Li < XL;_1 // value iteration for lower bounds
6 M; +— Mpira(G, L;) // player reduction
7 Wi +— Wrepe (M, Ui 1) // local propagation
8 U; +— min{U,_1, WPW(W,)} // widest path computation

9 return U;(sr)

Our algorithm for SGs

1 procedure BVI_-WP(G, ¢) G: SG, €: precision requirement

Lo+ 1, Uy T,7940
3 while U;(sr) — Li(s7) > £ do
4 i++
5 | MDP A+~ XL;_1 // value iteration for lower bounds
6 M;)— Mpra(G, L;) // player reduction
7 VW — Whepe (M, Ui—_1) // local propagation
8 U; +— min{U,_1, WPW(W,)} // widest path computation
9 return U;(sr)

66

Our algorithm for SGs

1 procedure BVI_.WP(G, ¢) G: SG, &: precision requirement

L(j — J_g UD — 1,140

For every sufficiently large i,

|

3 Wlli}e Ui(s1) — Li(s1) > € do | reachability prob. of M; and G are the same
4 1+t

5 | MDP =X L= // value iteration for lower bounds
6 M;)— Mpira(G, L;) // player reduction
7 Wi Wroepe (M, U;_y) // local propagation
8 U; + min{U;_1, WPW(W);)} // widest path computation

9 return U;(sr)

Our algorithm for SGs

1 procedure BVI_.WP(G, ¢) G: SG, &: precision requirement

Lo+ 1, Uy T,7940
3 while U;(sr) — Li(s7) > £ do
4 i++
5 L; + XL; 4 // value iteration for lower bounds
6 M; +— Mpira(G. L;) // player reduction
7 Wi +— Wrepe (M, Ui 1) // local propagation
8 U; +— min{U,_1, WPW(W,)} // widest path computation
9 return U;(sr)

68

Our algorithm for SGs

1 procedure BVI_.WP(G, ¢) G: SG, &: precision requirement

Lo+ 1, Uy T,7940
3 while U;(sr) — Li(s7) > £ do
4 1+
5 L; + XL;_4 // value iteration for lower bounds
6 M; +— Mpra(G. L;) // player reduction
7 Wi +— Wrepe (M, Ui 1) // local propagation
8 U; +— min{U,_1, WPW(W,)} // widest path computation
9 return U;(sr)

Theorem(P,T,H,H,2020). Let the while loop iterate forever in the
above algorithm. Then it generates a decreasing sequence of
functions that converges to optimal reachability probability:

[— 00

U()ZU]_ZZUL_)V

Experimental result

_ LJNKEA, Ver 1 || K+, Ver.2 K+, learning Our alg.
model Param. sfstates gftrans #EC [itr time(s% [itr time(s% [it.r visit% tim]e(s} itr time(s)
mdsm 3 62245 151143 11121 31121 4117339 49.3 15]/1120 5

4 335211 882765 1{[125 15125 47191301 42.1 861|124 38

5 8842 60437 4421 7 77 1] 167 6.9 14| 7 <1

cloud 6 34954 274965 17477| 11 177 11 5 41 0.6 3| 11 1
7 139402 1237525 69701|| 11 19721] 11 62 41 0.2 4| 11 5

3 12475 15228 2754| 2 <l| 2 <1| 972 49.0 137 2 <1

teamform 4 96665 116464 19800| 2 <1l 2 <1| 4154 346 9603|] 2 <1
5 907993 1084752 176760| 2 <l| 2 <1 TO| 2 <1

ivestor 50 211321 673810 29690441 184|441 249 TO||364 48
100 807521 2587510 114390(|801 3318 OOM TO| 688 736

500 1004 3007 502| 6 76 7 TO|| 5 <1

manyECs| 1000 2004 6007 1002|] 6 51| 6 51 TO|| 5 <1
5000 10004 30007 5002 SO SO TO|| 5 <1

[K+] Kelmendi, E., Kramer, J., Kretnsky, J., Weininger, M.: Value iteration for simple stochastic games: stopping
criterion and learning algorithm. Proc. CAV 2018

* Precision constant = 107°
(i.e. an approx. with 1078 error range is returned for each successful runs)

* Green shaded = fastest

e Gray shaded = computation failure
(TO=timeout (6hours), OOM= out of memory, SO=stack overflow)

Experimental result

_ LJNKEA, Ver 1 || K+, Ver.2 K+, learning Our alg.
model Param. #states s¢trans #EC [itr time(s% [itr time(s; [it.r visit% tim]e(s} itr time(s)
mdsm 3 62245 151143 11121 3|121 4117339 49.3 15({120 5]

4 335211 882765 1{[125 15125 47191301 42.1 861|124 38

5 8842 60437 4421 7 77 1| 167 6.9 14| 7 <1

cloud 6 34954 274965 17477| 11 177 11 5 41 0.6 3| 11 1
7 139402 1237525 69701|| 11 19721] 11 62 41 0.2 4| 11 5

3 12475 15228 2754| 2 <l| 2 <1| 972 49.0 137 2 <1

teamform 4 96665 116464 19800| 2 <1l 2 <1| 4154 34.6 9603| 2 <1
5 907993 1084752 176760| 2 <l| 2 <1 TO| 2 <1

investor 50 211321 673810 29690441 184|441 249 TO| 364 48
100 807521 2587510 114390(|801 3318 OOM TO||688 736

500 1004 3007 502| 6 76 7 TO|l 5 <1

manyECs| 1000 2004 6007 1002|] 6 51| 6 51 TO|| 5 <1
5000 10004 30007 5002 SO SO TO|| 5 <1

[K+] Kelmendi, E., Kramer, J., Kretnsky, J., Weininger, M.: Value iteration for simple stochastic games: stopping
criterion and learning algorithm. Proc. CAV 2018

* Precision constant = 107°
(i.e. an approx. with 1078 error range is returned for each successful runs)

* Green shaded = fastest

e Gray shaded = computation failure
(TO=timeout (6hours), OOM= out of memory, SO=stack overflow)

Fastest in 7/13
instances

Experimental result

_ LJNKEA, Ver 1 || K+, Ver.2 K+, learning Our alg.
model Param. s#states fftrans #£EC [itr time(s% [itr time(s; [it.r visit% tim]e(s) itr time(s)
mdsm 3 62245 151143 1]|121 31121 4117339 49.3 15(1120 5]

4 335211 882765 1(|125 15|125 4791301 42.1 86([124 38

D 8842 60437 4421 7 Tl 7 1| 167 6.9 14 7 <1

cloud 6 34954 274965 17477| 11 177] 11 5% 41 0.6 3| 11 1
7 139402 1237525 69701| 11 | 19721) 11 62 41 0.2 4]| 11 D

3 12475 15228 2754 2 <l| 2 <1l| 972 49.0 137 2 <1

teamform 4 96665 116464 19800 2 <l| 2 <1| 4154 34.6 | 9603 2 <1
5 907993 1084752 176760|| 2 <l 2 <1 TO| 2 <1

vestor 50 211321 673810 29690||441 184|441 249 TO| 364 48
100 807521 2587510 114390(|801 3318 OOM TO| 688 736

500 1004 3007 002 6 7 6 7 TO 5) <1

manyECs| 1000 2004 6007 1002} 6 51| 6 51 TO| 5 <1
5000 10004 30007 5002 SO SO TOJ 5 <1

o
[K+] Kelmendi, E., Kramer, J., Kretnsky, J., Weininger, M.: Value iterati@?for simple stochastic games: stopping
criterion and learning algorithm. Proc. CAV 2018

Slow/failure

_ Stably fast
sometimes

* Precision constant = 107°
(i.e. an approx. with 1078 error range is returned for each successful runs)

* Green shaded = fastest

e Gray shaded = computation failure
(TO=timeout (6hours), OOM= out of memory, SO=stack overflow)

Summary

We introduced a novel algorithm of Bounded
Value lteration (BVI) which is faster than the
existing one.

Future works

* Adapt the technique to a general reward setting
(currently reachability only)

e Extend applicability of the technique to more
complicated systems (e.g. black box ones)

