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A robot resolves a set of tasks
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Mode 2: urgent mode
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{Complete 15 tasks within 30 minutes}
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{Complete 15 tasks within 30 minutes}
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What is the probability that
the robot completes the tasks?



Problem formulation

Input: probabilistic program

1 x = 15: &t = 0:
2 p:= {0.9:1, 0.1:-3};
3 while x > 0 do

4 if *x then

5! t = t 4+ 3¢
6 X (= x — 1

7 else

8 t = t 4+ 1;
9 X (=X — P
10 fa

11 refute (t > 30)
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Problem formulation

Input: probabilistic program Problem
1 x == 155 t = 0; i .
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Problem formulation

Input: probabilistic program Problem
1 x = 15: &t = 0: . -
2 p o= {0.9:1, 0.1:—3}: What is the probability that
3 while x > 0 do the program terminates?
4 if *x then
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6 X (= x — 1 branching
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= Certification by supermartingale



Benchmark | Time (s) | Solution | Dimension | Prob. loops | Prob. Assignments

L . alain 0.11 | yes ) 2 yes yes

C e rt I fl C at I O n by catmouse 0.08 yes 2 yes yes
counterexla 0.1 no no no

S u p e r m a rti n ga | e counterexlc 0.11 yes 3 yes yes
easyl 0.09 yes 1 yes yes

exmini 0.09 yes 2 yes yes

insertsort 0.1 yes 3 yes yes

ndecr 0.09 || yes 2 yes yes

Probabilistic modification of perfect 011 || yes 3 yes yes
0.1 yes 3 yes no

real-world benchmarks - perfie) 0.1 no yes yes
(in Alias+, SAS’10) real2 0.09 no no no

realbubble 0.22 yes 3 yes yes

realselect 0.11 yes 3 yes yes

realshellsort 0.09 no yes no

serpent 0.1 yes 1 yes yes

sipmabubble 0.1 yes 3 yes yes

Almost-sure termination is cpivesiblis? L e i k)
qpfedNPthdMnlfiple 01 yes 3 yes yes

certified in 20/ 28 examples s e Gy N 9= - e i
speedpldi4 0.09 yes 3 yes yes

speedSimpleMultipleDep|| 0.09 no no no

speedSingleSingle2 00112 ):::’ £ i: ;rlc:)s

0.1 es 2 es no

MR 0.16 )r,w Zes yes

weell 0.11 yes 2 yes yes

(Agrawal+, POPL'18) while2 0.1 [l vyes 3 yes yes




de/dt

Certification by supermartingale

-0.5

0.5

(Steinhardt-Tedrake, IJRR’12)

System: a pendulum under
Gaussian noise

The log-base-10 of the

failure probability
(failure = |8]| > m/6 within 1h)

5—— >99% safety is guaranteed

(Pr(enter a bad state) <1%)



l % == Lo & == 0:
Control flow graph 2 poi= {0.9:1, 0.1:-3);
3 while x > 0 do
4 if * then
5 t ==t + 3;
6 x = x — 1
7 else
8 t =t + 1;
f = 9 X 1= X — P
L 10 i
X 11 refute (t > 30)

e A stateis a pair (program location, memory state)

* As powerful as MDP m
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7 else

8 t =t + 1;

9 X 1= X — P

10 i

11 refute (t > 30)

e A stateis a pair (program location, memory state)

* As powerful as MDP m



l % == 1b:s &t = 0:
Control flow graph 2 poi= {0.9:1, 0.1:-3);
3 while x > 0 do
4 if % then
H t == t + 3;
6 x = x — 1
7 else
8 t (= t + 1;
9 X 1= X — P
10 fi
11 | refute (t > 30)
SR [ x<0 ] Problem
: o= C = (15} x (R x (30,09))
0 C (Locations) X (Variables)
0.6 )—0

= Pr(the system eventually
e A stateis a pair (program location, memory state) . . . 5
+  As powerful as MDP visits the region C)-




Supermartingale = a function over states that is
“non-increasing” through transitions

f=10x —1

f=10
x == {0.9:1,0.1: —3)

VvI(l, - 1)... (angelic)
3l(l, — 1)...(demonic)

the value of f ) — 6
at the next state
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Ranking function
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Ranking function

The system eventually VISItS O (under any nondeterministic choice)



Ranking function
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The system eventually VISItS O (under any nondeterministic choice)



Ranking supermartingale
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Ranking supermartingale




Ranking supermartingale

[0, +00)-
valued
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) decreases at least 1
at the next state




Ranking supermartingale

[0, +00)-
valued

@@16;
s

The system eventually visits O almost surely

E ( the value of f

) decreases at least 1
at the next state




Barrier certificate

Safe region
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Barrier certificate
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Barrier certificate

Safe region

Unsafe region

<0 )7 f=0




Barrier certificate

Safe region

Unsafe region

The system does not enter the unsafe region



barrier certificate
(a.k.a. nonnegative repulsing )
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barrier certificate
(a.k.a. nonnegative repulsing )
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f (Xinit)




barrier certificate
(a.k.a. nonnegative repulsing )

[0,1]-

Safe region
valued

Unsafe region

f (Xinit)




barrier certificate

(a.k.a. nonnegative repulsing

f (Xinit)

Xinit
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barrier certificate

(a.k.a. nonnegative repulsing )
[0,1]- Safe region
f=1 valued
2\ Unsafe region
iy -
f Kinit) f=1

Pr(the system enters the unsafe region) < f(Xipit)



Our contributions

Comprehensive account of martingale-based
approximation methods via fixed point argument

LSoundness/compIeteness for uncountable-states I\/IDPs}

under angelic/demonic nondeterminism

{ Implementation and experiments }
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Two objective functions

* Given: a control flow graph, and asubset C of its states
o EStePs: [, x RV — [0, 00] and PT¢3¢h: [, x RV — [0,1] are
ESteDs. - 1y B ( the number of s.teps from c)
to the region C

preach. . ., p ( the system eventually visits)

the region C from c



Two objective functions

* Given: a control flow graph, and asubset C of its states
o EStePs: [, x RV — [0, 00] and PT¢3¢h: [, x RV — [0,1] are

the number of steps from ¢
]EStepS: C = ]E ( p ) Ldnaer

to the region C

angelic/demonic

the system eventually visits) scheduler

reach.,
v s ( the region C from c



Soundness/completeness

Ranking supermartingale

Soundness: J(RankSM)

=

(= Preach(c, ..) = 1)

Completeness: = 3J(RankSM)
Nonnegative repulsing supermartingale
Soundness: I(RepSM) =

Completeness: = 3J(RepSM)




Soundness/completeness

Ranking supermartingale

(wown ] Soundness: 3(RankSM) =

(= Preach(c, ..) = 1)

Not

E}Completeness: = 3J(RankSM)
Nonnegative repulsing supermartingale
@ Soundness: d(RepSM) =

Completeness: = 3J(RepSM)

known




Soundness/completeness

For certain endofunctions @ and ¥,

csteps UD and preach _ uy




Soundness/completeness

Our theorem

The lattice (F,E)

F ... the set of all (measurable) functions
f:LxR" - [0, 0]

C.. fEg ©Vs.f(s)<g(s)




Soundness/completeness

Our theorem

The lattice (F,E)

Soundness

f is a RankSM

Esteps — f

F ... the set of all (measurable) functions
f:LxR" - [0, 0]

C.. fEg ©Vs.f(s)<g(s)
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Our theorem

The lattice (F,E)

Soundness
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LSoundness/compIeteness for uncountable-states IVIDPs}

under angelic/demonic nondeterminism
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Soundness/completeness for
martingale methods

Approximation method It certifies Soundness Completeness
Additive ranking IEStepS < 0 Yes (MDP, Yes (MDP,
Supermartingale (Preach_ 1 continuous variable) | discrete variable)
(Chakarov-Sankaranarayanan, CAV’13 etc.) —
Nonnegative repulsing Yes (Markov Chain) |-

: Preach )
supermartingale =
(Steinhardt+, IJRR’12 etc.)

. Yes (Markov Chain) |-

y-scaled submartingale IP)reaCh >3
(Urabe+, LICS‘17) el
e-decreasing repulsing Yes (MDP, -
supermartingale [P)FeaCh < § |continuous variable,

(Chatterjee+, POPL'17)

linearity assumpt.)




Soundness/completeness for
martingale methods

J
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Approximation method It certifies Soundness Completeness
Additive ranking [ESteps « oo |Yes (MDP, Yes _(MDP,
Supermartingale I continuous variable) ~ CONntinuous
(Chakarov-Sankaranarayanan, CAV’13 etc.) (P — 1) | VarlabIE)
Nonnegative repulsing h . .
supermartingale Preach < § | Yes (MDP, continuous variable)
(Steinhardt+, IJRR’12 etc.)

. Yes (MDP, _
y-scaled submartingale IP)reaCh >3 continuous
(Urabe+, LICS‘17) = .

variable)

e-decreasing repulsing Yes (MDP,
supermartingale [[DFeaCh < § |continuous variable, No

(Chatterjee+, POPL'17)

linearity assumpt.)
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{ Implementation and experiments




Implementation and experiments

Prog. I (linear) |Prog. II (deg.-2 poly.)|Prog. II (deg.-3 poly.) Prog. III (linear)
| param. time (s)| bound [time(s)| bound [time (s)| bound @ [param, time (s)] bound
(a-1|Pt 0721l 0.021 | < 0.825(530.208| < 0.6552 |572.393| < 0.6555 | a-1)[PL = 02110026 | >0
: 2 = U. —
pLE0gl[002e | <1 |s26519] <10 561327 < 1.0 pr =08 N0z > 0.751) 7]
: 2 = 0. =
M; = —1
Table 1. Bounds by U-NNRepSupM @2y, =2 |[008B] 20
A = 12l 0033 |> 0.767
| | true reachability probability [U-NNRepSupM|1-RepSupM| My = —1 @
(r8) . 0.028 | >0 -
(c-1)| QAL00°-(04/06) 7 - g 196 0.505 | <1 =
1-(0.4/0.6)10 Gl : Az 0.040 |> 0.801
(c-2) 0.5 0.5 - @ =01
(c-3)| [ (2:25)Moe2(1/2)] g 5 0.2 0.5 — p=05 | 09| =20
e o T — ® (=01 o054 |>0.148
(c-4) (SZ)! ~ 0.333 — ) <1 p=0.1 i
Table 3. Probabilistic bounds given by U-NNRepSupM Table 2. Bounds by L-vy-SclSubM
and e-RepSupM with v = 0.999

* Implemented template-based synthesis algorithms
 Nontrivial bounds are found ()
* (Observed comparative advantage of nonnegative RepSM over &-decreasing RepSM (@)



summary

* Martingale can evaluate reachability of probabilistic
Programes in various ways

* We gave a comprehensive account of martingale-based approximation
methods via fixed point argument

. We proved SOUNdness/completeness of several methods for
uncountable-states M DPS, which extends known results

* We demonstrated implementation and experiments



