Ranking and Repulsing
 Supermartingales for Reachability in Probabilistic Programs

Toru Takisaka，Yuichiro Oyabu，Natsuki Urabe，Ichiro Hasuo

ERATO 蓮尾メタ数理システムデザインプロジェクト ERATO Metamathematics for Systems Design Project

A robot resolves a set of tasks

Mode 1: safe mode

Mode 1: safe mode

3 min.

Mode 2: urgent mode

Mode 2: urgent mode

Mode 2: urgent mode

$$
2 \text { 离 }
$$

Complete 15 tasks within 30 minutes

Complete 15 tasks within 30 minutes

What is the probability that the robot completes the tasks?

Problem formulation

Input: probabilistic program

```
\(1 \mathrm{x}:=15 ; \mathrm{t}:=0\);
\(2 \mathrm{p}:=\{0.9: 1,0.1:-3\}\);
    3 while \(x>0\) do
    4 if * then
    \(5 \quad \mathrm{t}:=\mathrm{t}+3\);
            \(\mathrm{x}:=\mathrm{x}-1\)
    else
            \(\mathrm{t}:=\mathrm{t}+1\);
            \(\mathrm{x}:=\mathrm{x}-\mathrm{p}\)
        fi
    refute ( \(\mathrm{t}>30\) )
```


Problem formulation

Input: probabilistic program

Problem formulation

Input: probabilistic program

Problem formulation

Problem

What is the probability that the program terminates?
(under angelic/demonic scheduler)

We admit continuous variable
\Rightarrow Generally one can't compute this value efficiently

Problem formulation

Problem

What is the probability that the program terminates?
(under angelic/demonic scheduler)

We admit continuous variable
\Rightarrow Generally one can't compute this value efficiently

\Rightarrow Certification by supermartingale

Certification by supermartingale

Probabilistic modification of real-world benchmarks

(in Alias+, SAS'10)

Almost-sure termination is certified in 20/28 examples
(Agrawal+, POPL'18)

Benchmark	Time (s)	Solution	Dimension	Prob. loops	Prob. Assignments
alain	0.11	yes	2	yes	yes
catmouse	0.08	yes	2	yes	yes
counterex1a	0.1	no		no	no
counterex1c	0.11	yes	3	yes	yes
easy1	0.09	yes	1	yes	yes
exmini	0.09	yes	2	yes	yes
insertsort	0.1	yes	3	yes	yes
ndecr	0.09	yes	2	yes	yes
perfect	0.11	yes	3	yes	yes
perfect2	0.1	yes	3	yes	no
	0.11	no		yes	yes
real2	0.09	no		no	no
realbubble	0.22	yes	3	yes	yes
realselect	0.11	yes	3	yes	yes
realshellsort	0.09	no		yes	no
serpent	0.1	yes	1	yes	yes
sipmabubble	0.1	yes	3	yes	yes
speedDis2	0.09	no		no	no
speedNestedMultiple	01	yes	3	yes	yes
speedpldi2	0.09	yes	2	yes	yes
speedpldi4	0.09	yes	3	yes	yes
speedSimpleMultipleDep	0.09	no		no	no
speedSingleSingle2	0.12	yes	2	yes	no
	0.1	no		yes	yes
unperfect	0.1	yes	2	yes	no
	0.16	no		yes	yes
wcet1	0.11	yes	2	yes	yes
while2	0.1	yes	3	yes	yes

Certification by supermartingale

(Steinhardt-Tedrake, IJRR'12)

Control flow graph


```
x := 15; t := 0;
    p := {0.9:1, 0.1:-3};
    while x > 0 do
        if * then
        t := t + 3;
        x := x - 1
        else
        t := t + 1;
        x := x - p
    fi
    refute (t > 30)
```

- A state is a pair (program location, memory state)
- As powerful as MDP
finite

Control flow graph


```
\(\mathrm{x}:=15 ; \mathrm{t}:=0\);
\(\mathrm{p}:=\{0.9: 1,0.1:-3\} ;\)
while \(\mathrm{x}>0\) do
    if \(*\) then
            \(\mathrm{t}:=\mathrm{t}+3\);
            \(\mathrm{x}:=\mathrm{x}-1\)
    else
        \(\mathrm{t}:=\mathrm{t}+1\);
        \(\mathrm{x}:=\mathrm{x}-\mathrm{p}\)
    fir
    refute (t > 30)
```

- A state is a pair (program location, memory state)
- As powerful as MDP
finite

Control flow graph


```
x := 15; t := 0;
    p := {0.9:1, 0.1:-3};
    while x > 0 do
        if * then
            t := t + 3;
        x := x - 1 
        x := x - p
        fi
    refute (t > 30)
```

- A state is a pair (program location, memory state)
- As powerful as MDP
finite

Control flow graph

x := 15; t := 0;
x := 15; t := 0;
p := {0.9:1, 0.1:-3};
p := {0.9:1, 0.1:-3};
while x > 0 do
while x > 0 do
if * then
if * then
t := t + 3;
t := t + 3;
else
else
t := t + 1;
t := t + 1;
fi
fi
refute (t > 30)
refute (t > 30)

- A state is a pair (program location, memory state)
- As powerful as MDP
finite

Control flow graph

$0<0$	
0	0.4
0.6	$\rightarrow 0$

```
x := 15; t := 0;
```

x := 15; t := 0;
p := {0.9:1, 0.1:-3};
p := {0.9:1, 0.1:-3};
while x > 0 do
while x > 0 do
if * then
if * then
t := t + 3;
t := t + 3;
x := x - 1
x := x - 1
else
else
t := t + 1;
t := t + 1;
x := x - p
x := x - p
fi
fi
11 refute (t > 30)

```
11 refute (t > 30)
```

- A state is a pair (program location, memory state)
- As powerful as MDP
finite

Control flow graph

- A state is a pair (program location, memory state)
- As powerful as MDP
finite

Problem

$$
C:=\left\{\boldsymbol{l}_{5}\right\} \times(\mathbb{R} \times(30, \infty))
$$

\subseteq (Locations) \times (Variables)
$\Rightarrow \operatorname{Pr}($ the system eventually visits the region $C)$?

Supermartingale $=$ a function over states that is

"non-increasing" through transitions

Ranking function

Ranking function

Ranking function

Ranking function

The system eventually visits (under any nondeterministic choice)

Ranking function

The system eventually visits \bigcirc (under any nondeterministic choice)

Ranking supermartingale

Ranking supermartingale

Ranking supermartingale

Ranking supermartingale

The system eventually visits © almost surely

Barrier certificate

Safe region
\square Unsafe region

Barrier certificate

Safe region
Unsafe region

Barrier certificate

Safe region Unsafe region

Barrier certificate

Safe region Unsafe region

Barrier certificate

Safe region
\square Unsafe region

The system does not enter the unsafe region

Probabilistic barrier certificate
(a.k.a. nonnegative repulsing supermartingale)

Safe region
\square Unsafe region

Probabilistic barrier certificate
(a.k.a. nonnegative repulsing supermartingale)

\square Safe region
\square Unsafe region

Probabilistic barrier certificate
(a.k.a. nonnegative repulsing supermartingale)

Safe region
\square Unsafe region

Probabilistic barrier certificate
(a.k.a. nonnegative repulsing supermartingale)

Safe region
\square Unsafe region

Probabilistic barrier certificate
(a.k.a. nonnegative repulsing supermartingale)

Safe region
\square Unsafe region

$\operatorname{Pr}($ the system enters the unsafe region $) \leq f\left(x_{\text {init }}\right)$

Our contributions

Comprehensive account of martingale-based approximation methods via fixed point argument

Soundness/completeness for uncountable-states MDPs, under angelic/demonic nondeterminism

Implementation and experiments

Our contributions

Comprehensive account of martingale-based approximation methods via fixed point argument

Soundness/completeness for uncountable-states MDPs, under angelic/demonic nondeterminism

Implementation and experiments

Two objective functions

- Given: a control flow graph, and a subset C of its states
- $\mathbb{E}^{\text {steps }}: L \times \mathbb{R}^{V} \rightarrow[0, \infty]$ and $\mathbb{P}^{\text {reach }}: L \times \mathbb{R}^{V} \rightarrow[0,1]$ are

$$
\begin{aligned}
& \mathbb{E}^{\text {steps }}: c \mapsto \mathbb{E}\binom{\text { the number of steps from } c}{\text { to the region } C} \\
& \mathbb{P}^{\text {reach }}: c \mapsto \mathbb{P}\binom{\text { the system eventually visits }}{\text { the region } C \text { from } c}
\end{aligned}
$$

Two objective functions

- Given: a control flow graph, and a subset C of its states
- $\mathbb{E}^{\text {steps }}: L \times \mathbb{R}^{V} \rightarrow[0, \infty]$ and $\mathbb{P}^{\text {reach }}: L \times \mathbb{R}^{V} \rightarrow[0,1]$ are

$$
\begin{aligned}
& \mathbb{E}^{\text {steps }}: c \mapsto \mathbb{E}\binom{\text { the number of steps from } c}{\text { to the region } C} \\
& \mathbb{P}^{\text {reach }}: c \mapsto \mathbb{P}\binom{\text { the system eventually visits }}{\text { the region } C \text { from } c}
\end{aligned}
$$

Soundness/completeness

Ranking supermartingale
Soundness: $\exists($ RankSM $) \Rightarrow \mathbb{E}^{\text {steps }}\left(c_{\text {init }}\right)<\infty$
$\left(\Rightarrow \mathbb{P}^{\text {reach }}\left(c_{\text {init }}\right)=1\right)$
Completeness: $\mathbb{E}^{\text {steps }}\left(c_{\text {init }}\right)<\infty \quad \Rightarrow \quad \exists($ RankSM $)$
Nonnegative repulsing supermartingale
Soundness: \exists (RepSM $) \quad \Rightarrow \quad \mathbb{P}^{\text {reach }}\left(c_{\text {init }}\right) \leq \delta$
Completeness: $\mathbb{P}^{\text {reach }}\left(c_{\text {init }}\right) \leq \delta \quad \Rightarrow \quad \exists($ RepSM $)$

Soundness/completeness

Ranking supermartingale

Known

Partly known

Completeness: $\mathbb{E}^{\text {steps }}\left(c_{\text {init }}\right)<\infty$
Nonnegative repulsing supermartingale
$\substack{\text { Partly } \\ \text { Known }}$
Soundness: $\exists($ RepSM $) \quad \Rightarrow \quad \mathbb{P}^{\text {reach }}\left(c_{\text {init }}\right) \leq \delta$
Known
Kot
Completeness:
$\mathbb{P}^{\text {reach }}\left(c_{\text {init }}\right) \leq \delta \quad \Rightarrow \quad \exists($ RepSM $)$

Soundness/completeness

For certain endofunctions Φ and Ψ, $\mathbb{E}^{\text {steps }}=\mu \Phi$ and $\mathbb{P}^{\text {reach }}=\mu \Psi$

Soundness/completeness

Our theorem

$\mathbb{E}^{\text {steps }}=\mu \Phi$

The lattice $(\mathcal{F}, ㄷ ㅡ)$
\mathcal{F}... the set of all (measurable) functions $f: L \times \mathbb{R}^{V} \rightarrow[0, \infty]$
$\sqsubseteq \ldots \quad f \sqsubseteq g \Leftrightarrow \forall s . f(s) \leq g(s)$

Soundness/completeness

Our theorem $\mathbb{E}^{\text {steps }}=\mu \Phi$

The lattice $(\mathcal{F}, ㄷ)$
\mathcal{F}... the set of all (measurable) functions

$$
f: L \times \mathbb{R}^{V} \rightarrow[0, \infty]
$$

$$
\sqsubseteq \ldots \quad f \sqsubseteq g \Leftrightarrow \forall s . f(s) \leq g(s)
$$

Soundness

f is a RankSM

$$
\mathbb{E}^{\text {steps }} \subseteq f
$$

Soundness/completeness

Our theorem $\mathbb{E}^{\text {steps }}=\mu \Phi$

The lattice $(\mathcal{F}, ㄷ)$
\mathcal{F}... the set of all (measurable) functions $f: L \times \mathbb{R}^{V} \rightarrow[0, \infty]$
$\sqsubseteq \ldots \quad f \sqsubseteq g \Leftrightarrow \forall s . f(s) \leq g(s)$

Soundness

$\begin{aligned} & \frac{f \text { is a RankSM }}{\mathbb{E}^{\text {steps }} \sqsubseteq f} \Leftrightarrow \Phi f \sqsubseteq f \\ & \mu \Phi \sqsubseteq f\end{aligned}$

Soundness/completeness

Soundness

$$
\frac{f \text { is a RankSM }}{\mathbb{E}^{\text {steps }} \sqsubseteq f} \Leftrightarrow \frac{\Phi f \sqsubseteq f}{\mu \Phi \sqsubseteq f}
$$

Soundness/completeness

Soundness | $\frac{f \text { is a RankSM }}{\mathbb{E}^{\text {steps }} \sqsubseteq f}$ | \Leftrightarrow |
| ---: | :--- |
| $\mu \Phi \sqsubseteq f$ | |
| f | |

The lattice $(\mathcal{F}$, 드
\mathcal{F}... the set of all (measurable) functions $f: L \times \mathbb{R}^{V} \rightarrow[0, \infty]$
$\sqsubseteq \ldots \quad f \subseteq g \Leftrightarrow \forall s . f(s) \leq g(s)$

Knaster-Tarski theorem

Completeness

$\Phi \mathbb{E}^{\text {steps }} \subseteq \mathbb{E}^{\text {steps }}$

Soundness/completeness

Soundness

f is a RepSM
$\mathbb{P}^{\text {reach }} \sqsubseteq f$$\Leftrightarrow \frac{\Psi f \sqsubseteq f}{\mu \Psi \sqsubseteq f}$

The lattice $(\mathcal{F}$, 드)
\mathcal{F}... the set of all (measurable) functions

$$
f: L \times \mathbb{R}^{V} \rightarrow[0,1]
$$

$\sqsubseteq \ldots \quad f \subseteq g \Leftrightarrow \forall s . f(s) \leq g(s)$

Knaster-Tarski theorem

Completeness

$\Psi \mathbb{P}^{\text {reach }} \subseteq \mathbb{P}^{\text {reach }}$

Our contributions

Comprehensive account of martingale-based approximation methods via fixed point argument

Soundness/completeness for uncountable-states MDPs, under angelic/demonic nondeterminism

Implementation and experiments

Soundness/completeness for martingale methods

Approximation method	It certifies	Soundness	Completeness
Additive ranking Supermartingale (Chakarov-Sankaranarayanan, CAV'13 etc.)	$\begin{gathered} \mathbb{E}^{\text {steps }}<\infty \\ \left(\mathbb{P}^{\text {reach }}=1\right) \end{gathered}$	Yes (MDP, continuous variable)	Yes (MDP, discrete variable)
Nonnegative repulsing supermartingale (Steinhardt+, IJRR'12 etc.)	$\mathbb{P}^{\text {reach }} \leq \delta$	Yes (Markov Chain)	-
γ-scaled submartingale (Urabe+, LICS‘17)	$\mathbb{P}^{\text {reach }} \geq \delta$	Yes (Markov Chain)	-
ε-decreasing repulsing supermartingale (Chatterjee+, POPL'17)	$\mathbb{P}^{\text {reach }} \leq \delta$	Yes (MDP, continuous variable, linearity assumpt.)	-

Soundness/completeness for martingale methods

Approximation method	It certifies	Soundness	Completeness
Additive ranking Supermartingale (Chakarov-Sankaranarayanan, CAV'13 etc.)	$\begin{gathered} \mathbb{E}^{\text {steps }}<\infty \\ \left(\mathbb{P}^{\text {reach }}=1\right) \end{gathered}$	Yes (MDP, continuous variable)	Yes (MDP, continuous variable)
Nonnegative repulsing supermartingale (Steinhardt+, IJRR'12 etc.)	$\mathbb{P}^{\text {reach }} \leq \delta$	Yes (MDP, continuous variable)	
γ-scaled submartingale (Urabe+, LICS'17)	$\mathbb{P}^{\text {reach }} \geq \delta$	Yes (MDP, continuous variable)	
ε-decreasing repulsing supermartingale (Chatterjee+, POPL'17)	$\mathbb{P}^{\text {reach }} \leq \delta$	Yes (MDP, continuous variable, linearity assumpt.)	No

Our contributions

Comprehensive account of martingale-based approximation methods via fixed point argument

Soundness/completeness for uncountable-states MDPs,

 under angelic/demonic nondeterminismImplementation and experiments

Implementation and experiments

		Prog. I (linear)		Prog. II (deg.-2 poly.)		Prog. II (deg.-3 poly.)	
	param.	time (s)	bound	time (s)	bound	time (s)	bound
(a-1)	$p_{1}=0.2$ $p_{2}=0.4$ $p_{1}=0.8$	0.021	≤ 0.825	530.298	≤ 0.6552	572.393	≤ 0.6555
	$p_{1}=0.8$ $p_{2}=0.1$	0.024	≤ 1	526.519	≤ 1.0	561.327	≤ 1.0

Table 1. Bounds by U-NNRepSupM

	true reachability probability	U-NNRepSupM	1-RepSupM
$(\mathrm{c}-1)$	$\frac{(0.4 / 0.6)^{5}-(0.4 / 0.6)^{10}}{1-(0.4 / 0.6)^{10}} \approx 0.116$	0.505	<1
$(\mathrm{c}-2)$	0.5	0.5	-
$(\mathrm{c}-3)$	$\int_{0}^{1}\left(\frac{0.25}{0.75}\right)^{\left\lceil\log _{2}(1 / x)\right\rceil} d x \approx 0.2$	0.5	-
$(\mathrm{c}-4)$	$\left(\frac{0.25}{0.75}\right)^{1} \approx 0.333$	-	<1

		Prog. III (linear)	
	param.	time (s)	bound
(a-1)	$\left\lvert\, \begin{aligned} & p_{1}=0.2 \\ & p_{2}=0.4\end{aligned}\right.$	0.026	≥ 0
	$p_{1}=0.8$ $p_{2}=0.1$	0.022	≥ 0.751
(a-2)	$M_{1}=-1$ $M_{2}=2$	0.033	≥ 0
	$\begin{aligned} & M_{1}=-2 \\ & M_{2}=1 \end{aligned}$	0.033	≥ 0.767
(a-3)	$\begin{aligned} & M_{1}=-1 \\ & M_{2}=2 \end{aligned}$	0.028	≥ 0
	$\begin{aligned} & M_{1}=-2 \\ & M_{2}=1 \end{aligned}$	0.040	≥ 0.801
	$\begin{aligned} & c=0.1 \\ & p=0.5 \end{aligned}$	0.056	≥ 0
(b)	$p=0.1$ $p=0.1$	0.054	≥ 0.148

Table 3. Probabilistic bounds given by U-NNRepSupM and ε-RepSupM

Table 2. Bounds by $\mathrm{L}-\gamma-\mathrm{SclSubM}$ with $\gamma=0.999$

- Implemented template-based synthesis algorithms
- Nontrivial bounds are found (1)
- Observed comparative advantage of nonnegative RepSM over ε-decreasing RepSM (2))

Summary

- Martingale can evaluate reachability of probabilistic programs in various ways
- We gave a comprehensive account of martingale-based approximation methods via fixed point argument
- We proved Soundness/completeness of several methods for uncountable-states MDPs, which extends known results
- We demonstrated implementation and experiments

